Sandbox Reserved 346

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 7: Line 7:
Aspartate Aminotransferase (AST), also know as Glutamic aspartic transaminase, glutamic oxaloacetic transaminase, and transaminase A., is an enzyme that is a member of the class-I pyridoxal-phosphate-dependent aminotransferase family.It is coded by the gene GOT1. It is a homodimer that is 413 amino acids long and serves a critical role in amino acid metabolism. Within prokaryote cells it is exclusively found in the cytosol, but in eukaryotic cells there are cytosol, mitochondrial, and chloroplast isozymes.
Aspartate Aminotransferase (AST), also know as Glutamic aspartic transaminase, glutamic oxaloacetic transaminase, and transaminase A., is an enzyme that is a member of the class-I pyridoxal-phosphate-dependent aminotransferase family.It is coded by the gene GOT1. It is a homodimer that is 413 amino acids long and serves a critical role in amino acid metabolism. Within prokaryote cells it is exclusively found in the cytosol, but in eukaryotic cells there are cytosol, mitochondrial, and chloroplast isozymes.
-
In the human body it is produced by the brain, skeletal muscles, liver, pancreas, red blood cells, and kidneys. The wide range of tissues in which it is made, separates it from the similar enzyme alanine transaminase (ALT) which is found primarily in the liver.
+
In the human body it is produced by the brain, skeletal muscles, liver, pancreas, red blood cells, and kidneys. The wide range of tissues in which it is made, separates it from the similar enzyme alanine transaminase (ALT) which is found primarily in the liver. The level of AST in the body can be used as a marker for tissue disease or damage. As well, AST and ALT levels can be compared to pinpoint whether tissue damage is primarily found within the liver.
-
 
+
=='''Structure'''==
=='''Structure'''==
=='''Function'''==
=='''Function'''==

Revision as of 19:28, 30 March 2011

Contents

Aspartate Aminotransferase

This Sandbox is Reserved from January 10, 2010, through April 10, 2011 for use in BCMB 307-Proteins course taught by Andrea Gorrell at the University of Northern British Columbia, Prince George, BC, Canada.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

PDB ID 1b4x

Drag the structure with the mouse to rotate
1b4x, resolution 2.45Å ()
Ligands: ,
Activity: Aspartate transaminase, with EC number 2.6.1.1
Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml


General Information

Aspartate Aminotransferase (AST), also know as Glutamic aspartic transaminase, glutamic oxaloacetic transaminase, and transaminase A., is an enzyme that is a member of the class-I pyridoxal-phosphate-dependent aminotransferase family.It is coded by the gene GOT1. It is a homodimer that is 413 amino acids long and serves a critical role in amino acid metabolism. Within prokaryote cells it is exclusively found in the cytosol, but in eukaryotic cells there are cytosol, mitochondrial, and chloroplast isozymes. 

In the human body it is produced by the brain, skeletal muscles, liver, pancreas, red blood cells, and kidneys. The wide range of tissues in which it is made, separates it from the similar enzyme alanine transaminase (ALT) which is found primarily in the liver. The level of AST in the body can be used as a marker for tissue disease or damage. As well, AST and ALT levels can be compared to pinpoint whether tissue damage is primarily found within the liver.

Structure

Function

Clinical Applications

Additional Resources

References

Personal tools