Sandbox 43

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 9: Line 9:
== '''Structure''' ==
== '''Structure''' ==
-
The quaternary structure of horse pancreatic lipase (as featured right) contains two molecules which each contain 449 amino acid residues, 705 water molecules, and 1 calcium ion. These two identical molecules are connected by a two-fold symmetry axis. The <scene name='Sandbox_43/Interactions_between_chains/1'>interactions between the a chain and the b chain</scene> include <scene name='Sandbox_43/Hydogen_bonds/1'>hydrogen bonds</scene> and salt bridges. The secondary structure of lipase is composed of 102 residues that constitute 13 <scene name='Sandbox_43/Alpha_helixes/1'>alpha helices</scene> (22% helical) and 139 residues that constitute 28 <scene name='Sandbox_43/Beta_sheets/3'>beta sheet</scene> strands (30% beta sheets). Lipase is essentially composed of two domains, the <scene name='Sandbox_43/N_terminal/1'>N-terminal domain</scene>, which contains the <scene name='Sandbox_43/Active_site/4'>active site</scene> of lipase (consisting of three residues: Ser-152, Asp-176, and His-263). The N-terminal domain also contains the <scene name='Sandbox_43/Active_site/3'>lid region</scene> (residues 216-239) which serves to block the active site, which is nestled in the <scene name='Sandbox_43/Hhhhhhhhhhhyrdop/1'>hydrophobic regions</scene>, (in red) from the solvent. Likewise, the active site does not have interactions with the polar, <scene name='Sandbox_43/Hhhhhyrdophilic/1'>hydrophilic regions</scene> (in orange) Additionally, the <scene name='Sandbox_43/C_terminal/1'>C-terminal domain</scene> is essential to the binding of lipase with colipase, an important cofactor for the catalysis of lipids. This forms the <scene name='Sandbox_43/Complex_with_colipase/1'>lipase-colipase complex</scene>.
+
The quaternary structure of horse pancreatic lipase (as featured right) contains two molecules which each contain 449 amino acid residues, 705 water molecules, and 1 calcium ion. These two identical molecules are connected by a two-fold symmetry axis. The <scene name='Sandbox_43/Interactions_between_chains/1'>interactions between the a chain and the b chain</scene> include <scene name='Sandbox_43/Hydogen_bonds/1'>hydrogen bonds</scene> and salt bridges. The secondary structure of lipase is composed of 102 residues that constitute 13 <scene name='Sandbox_43/Alpha_helixes/1'>alpha helices</scene> (22% helical) and 139 residues that constitute 28 <scene name='Sandbox_43/Beta_sheets/3'>beta sheet</scene> strands (30% beta sheets). Lipase is essentially composed of two domains, the <scene name='Sandbox_43/N_terminal/1'>N-terminal domain</scene>, which contains the <scene name='Sandbox_43/Active_site/4'>active site</scene> of lipase (consisting of three residues: Ser-152, Asp-176, and His-263). The N-terminal domain also contains the <scene name='Sandbox_43/Active_site/3'>lid region</scene> (residues 216-239) which serves to block the active site, which is nestled in the <scene name='Sandbox_43/Hhhhhhhhhhhyrdop/1'>hydrophobic regions</scene>, (in red) from the solvent. Likewise, the active site does not have interactions with the polar, <scene name='Sandbox_43/Hhhhhyrdophilic/1'>hydrophilic regions</scene> (in orange). Additionally, the <scene name='Sandbox_43/C_terminal/1'>C-terminal domain</scene> is essential to the binding of lipase with colipase, an important cofactor for the catalysis of lipids. This forms the <scene name='Sandbox_43/Complex_with_colipase/1'>lipase-colipase complex</scene>.
== '''Calcium Ligand''' ==
== '''Calcium Ligand''' ==
Line 22: Line 22:
[[Image:Hydrolysis.gif|200px|left|thumb| Lipase-catalyzed hydrolysis of lipids. Notice the catalytic triad (as seen in serine proteases) of Ser-152, Asp-176, and His-263 that constitute the active site.]]
[[Image:Hydrolysis.gif|200px|left|thumb| Lipase-catalyzed hydrolysis of lipids. Notice the catalytic triad (as seen in serine proteases) of Ser-152, Asp-176, and His-263 that constitute the active site.]]
-
Once the lipid has bound to the active site of pancreatic lipase, the catalysis begins. <scene name='Sandbox_43/Asp_176/1'>Asp-176</scene> acts as a base and removes the proton from <scene name='Sandbox_43/Ser_152/3'>His-263</scene>. This allows His-263 to push electrons towards <scene name='Sandbox_43/Ser_152/2'>Ser-152</scene>, removing the hydrogen from serine's alcohol. Consequently, the nucleophilicity of the now-charged oxygen atom on Ser-152 is greatly increased, promoting its attack of one of the ester carbons of the triglyceride. Through the nucleophilic acyl substitution mechanism, Ser-152 forms a tertrahedral intermediate with the lipid, which consequently exposes the former carbonyl oxygen (now negatively charged) to the oxyanion hole.
+
Once the lipid has bound to the active site of pancreatic lipase, the catalysis begins. <scene name='Sandbox_43/Asp_176/1'>Asp-176</scene> acts as a base and removes the proton from <scene name='Sandbox_43/Ser_152/3'>His-263</scene>. This allows His-263 to push electrons towards <scene name='Sandbox_43/Ser_152/2'>Ser-152</scene>, removing the hydrogen from serine's alcohol. Consequently, the nucleophilicity of the now-charged oxygen atom on Ser-152 is greatly increased, promoting its attack of one of the ester carbons of the triglyceride. Through the nucleophilic acyl substitution mechanism, Ser-152 forms a tertrahedral intermediate with the lipid, which consequently exposes the former carbonyl oxygen (now negatively charged) to the oxyanion hole. Coming out of this stabilized transition state, the first product of the reaction (an alcohol) is pushed off the carbonyl carbon as the ester is reformed. Finally, hydrolysis can take place and the second product, the free fatty acid, leaves and the alcohol substituent of Ser-152 is reformed.

Revision as of 23:19, 13 November 2011

Please do NOT make changes to this Sandbox. Sandboxes 30-60 are reserved for use by Biochemistry 410 & 412 at Messiah College taught by Dr. Hannah Tims during Fall 2012 and Spring 2013.


Pancreatic Lipase

Introduction

Structure of Horse Pancreatic Lipase (PDB entry 1hpl)

Drag the structure with the mouse to rotate
Personal tools