3r2w
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==Crystal Strucutre of UDP-glucose Pyrophosphorylase of Homo Sapiens== |
+ | <StructureSection load='3r2w' size='340' side='right' caption='[[3r2w]], [[Resolution|resolution]] 3.60Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[3r2w]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3R2W OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3R2W FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">UGP2, UGP1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/UTP--glucose-1-phosphate_uridylyltransferase UTP--glucose-1-phosphate uridylyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.9 2.7.7.9] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3r2w FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3r2w OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3r2w RCSB], [http://www.ebi.ac.uk/pdbsum/3r2w PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | UDP-glucose pyrophosphorylase (UGPase) is highly conserved among eukaryotes. UGPase reversely catalyzes the formation of UDP-glucose and is critical in carbohydrate metabolism. Previous studies have mainly focused on the UGPases from plants, fungi and parasites and indicate that the regulatory mechanisms responsible for the enzyme activity vary among different organisms. Here the crystal structure of human UGPase (hUGPase) was determined and shown to form octamers through end-to-end and side-by-side interactions. The observed latch loop in hUGPase distinctly differs from yeast UGPase (yUGPase), which could explain why hUGPase and yUGPase possess different enzymatic activities. Mutagenesis studies showed that both dissociation of octamers and mutations of the latch loop can significantly affect the UGPase activity. Moreover, this latch effect is also evolutionarily meaningful in UGPase from different species. | ||
- | + | The crystal structure of human UDP-glucose pyrophosphorylase reveals a latch effect that influence enzymatic activity.,Yu Q, Zheng X Biochem J. 2011 Dec 1. PMID:22132858<ref>PMID:22132858</ref> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: UTP--glucose-1-phosphate uridylyltransferase]] | [[Category: UTP--glucose-1-phosphate uridylyltransferase]] |
Revision as of 04:50, 5 June 2014
Crystal Strucutre of UDP-glucose Pyrophosphorylase of Homo Sapiens
|