We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
Journal:BMC:3
From Proteopedia
(Difference between revisions)
| Line 21: | Line 21: | ||
The mechanism of metabolism of substrate by XO requires that an electrophilic carbon next to a ring nitrogen of the substrate be positioned adjacent to Mo-Pt, with nitrogen towards Glu1261. Glu1261 acts as a general base and abstracts a proton from Mo-Pt hydroxyl group. The ionized Mo-Pt facilitates nucleophilic attack on the electrophilic carbon center. This type of motif is seen in the substrate inhibitors, allopurinol and FYX-051.<ref name="Eger"/> Febuxostat and piraxostat do not possess this motif and do not get metabolized by Mo-Pt. | The mechanism of metabolism of substrate by XO requires that an electrophilic carbon next to a ring nitrogen of the substrate be positioned adjacent to Mo-Pt, with nitrogen towards Glu1261. Glu1261 acts as a general base and abstracts a proton from Mo-Pt hydroxyl group. The ionized Mo-Pt facilitates nucleophilic attack on the electrophilic carbon center. This type of motif is seen in the substrate inhibitors, allopurinol and FYX-051.<ref name="Eger"/> Febuxostat and piraxostat do not possess this motif and do not get metabolized by Mo-Pt. | ||
Our hit has a novel isocytosine scaffold that has a nitrogen in the desired position, but the carbon is substituted with –NH2, and is not available for attack by Mo-Pt. Hence our compounds are "pure inhibitors" and not "substrate inhibitors". | Our hit has a novel isocytosine scaffold that has a nitrogen in the desired position, but the carbon is substituted with –NH2, and is not available for attack by Mo-Pt. Hence our compounds are "pure inhibitors" and not "substrate inhibitors". | ||
| - | |||
| - | References | ||
| - | 1. Pauff, J. M.; Cao, H.; Hille, R. J. Biol. Chem. 2009, 284, 8760. | ||
| - | 2. Truglio, J. J.; Theis, K.; Leimkuhler, S.; Rappa, R.; Rajagopalan, K. V.; Kisker, C. Structure. 2002, 10, 115. | ||
| - | 3. Okamoto, K.; Eger, B. T.; Nishino, T.; Kondo, S.; Pai, E. F.; Nishino, T. J. Biol. Chem. 2003, 278, 1848. | ||
| - | 4. Okamoto, K.; Matsumoto, K.; Hille, R.; Eger, B. T.; Pai, E. F.; Nishino, T. Proc. Natl. Acad. Sci. U S A. 2004, 101, 7931. | ||
| - | 5. Fukunari, A.; Okamoto, K.; Nishino, T.; Eger, B. T.; Pai, E. F.; Kamezawa, M.; Yamada, I.; Kato, N. J. Pharmacol. Exp. Ther. 2004, 311, 519. | ||
</StructureSection> | </StructureSection> | ||
Revision as of 11:51, 19 March 2012
| |||||||||||
- ↑ none yet
- ↑ Pauff JM, Cao H, Hille R. Substrate Orientation and Catalysis at the Molybdenum Site in Xanthine Oxidase: CRYSTAL STRUCTURES IN COMPLEX WITH XANTHINE AND LUMAZINE. J Biol Chem. 2009 Mar 27;284(13):8760-7. Epub 2008 Dec 24. PMID:19109252 doi:10.1074/jbc.M804517200
- ↑ Fukunari A, Okamoto K, Nishino T, Eger BT, Pai EF, Kamezawa M, Yamada I, Kato N. Y-700 [1-[3-Cyano-4-(2,2-dimethylpropoxy)phenyl]-1H-pyrazole-4-carboxylic acid]: a potent xanthine oxidoreductase inhibitor with hepatic excretion. J Pharmacol Exp Ther. 2004 Nov;311(2):519-28. Epub 2004 Jun 9. PMID:15190124 doi:10.1124/jpet.104.070433
- ↑ 4.0 4.1 Okamoto K, Eger BT, Nishino T, Kondo S, Pai EF, Nishino T. An extremely potent inhibitor of xanthine oxidoreductase. Crystal structure of the enzyme-inhibitor complex and mechanism of inhibition. J Biol Chem. 2003 Jan 17;278(3):1848-55. Epub 2002 Nov 5. PMID:12421831 doi:10.1074/jbc.M208307200
- ↑ Truglio JJ, Theis K, Leimkuhler S, Rappa R, Rajagopalan KV, Kisker C. Crystal structures of the active and alloxanthine-inhibited forms of xanthine dehydrogenase from Rhodobacter capsulatus. Structure. 2002 Jan;10(1):115-25. PMID:11796116
- ↑ 6.0 6.1 Okamoto K, Matsumoto K, Hille R, Eger BT, Pai EF, Nishino T. The crystal structure of xanthine oxidoreductase during catalysis: implications for reaction mechanism and enzyme inhibition. Proc Natl Acad Sci U S A. 2004 May 25;101(21):7931-6. Epub 2004 May 17. PMID:15148401 doi:10.1073/pnas.0400973101
This page complements a publication in scientific journals and is one of the Proteopedia's Interactive 3D Complement pages. For aditional details please see I3DC.
