1f7a

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
==Overview==
==Overview==
-
The crystal structure of an actual HIV-1 protease-substrate complex is, presented at 2.0 A resolution (R-value of 19.7 % (R(free) 23.3 %)) between, an inactive variant (D25N) of HIV-1 protease and a long substrate peptide, Lys-Ala-Arg-Val-Leu-Ala-Glu-Ala-Met-Ser, which covers a full binding, epitope of capsid(CA)-p2, cleavage site. The substrate peptide is, asymmetric in both size and charge distribution. To accommodate this, asymmetry the two protease monomers adopt different conformations burying, a total of 1038 A(2) of surface area at the protease-substrate interface., The specificity for the CA-p2 substrate peptide is mainly hydrophobic, as, most of the hydrogen bonds are made with the backbone of the peptide, substrate. Two water molecules bridge the two monomers through the loops, Gly49-Gly52 (Gly49'-Gly52') and Pro79'-Val82' (Pro79-Val82). When other, complexes are compared, the mobility of these loops is correlated with the, content of the P1 and P1' sites. Interdependence of the conformational, changes allows the protease to exhibit its wide range of substrate, specificity.
+
The crystal structure of an actual HIV-1 protease-substrate complex is presented at 2.0 A resolution (R-value of 19.7 % (R(free) 23.3 %)) between an inactive variant (D25N) of HIV-1 protease and a long substrate peptide, Lys-Ala-Arg-Val-Leu-Ala-Glu-Ala-Met-Ser, which covers a full binding epitope of capsid(CA)-p2, cleavage site. The substrate peptide is asymmetric in both size and charge distribution. To accommodate this asymmetry the two protease monomers adopt different conformations burying a total of 1038 A(2) of surface area at the protease-substrate interface. The specificity for the CA-p2 substrate peptide is mainly hydrophobic, as most of the hydrogen bonds are made with the backbone of the peptide substrate. Two water molecules bridge the two monomers through the loops Gly49-Gly52 (Gly49'-Gly52') and Pro79'-Val82' (Pro79-Val82). When other complexes are compared, the mobility of these loops is correlated with the content of the P1 and P1' sites. Interdependence of the conformational changes allows the protease to exhibit its wide range of substrate specificity.
==About this Structure==
==About this Structure==
Line 14: Line 14:
[[Category: Human immunodeficiency virus 1]]
[[Category: Human immunodeficiency virus 1]]
[[Category: Single protein]]
[[Category: Single protein]]
-
[[Category: Schiffer, C.A.]]
+
[[Category: Schiffer, C A.]]
[[Category: ACT]]
[[Category: ACT]]
[[Category: capsid]]
[[Category: capsid]]
[[Category: substrate recognition]]
[[Category: substrate recognition]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Fri Feb 15 15:46:17 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Feb 21 12:35:38 2008''

Revision as of 10:35, 21 February 2008


1f7a, resolution 2.00Å

Drag the structure with the mouse to rotate

HOW DOES A SYMMETRIC DIMER RECOGNIZE AN ASYMMETRIC SUBSTRATE? A SUBSTRATE COMPLEX OF HIV-1 PROTEASE.

Overview

The crystal structure of an actual HIV-1 protease-substrate complex is presented at 2.0 A resolution (R-value of 19.7 % (R(free) 23.3 %)) between an inactive variant (D25N) of HIV-1 protease and a long substrate peptide, Lys-Ala-Arg-Val-Leu-Ala-Glu-Ala-Met-Ser, which covers a full binding epitope of capsid(CA)-p2, cleavage site. The substrate peptide is asymmetric in both size and charge distribution. To accommodate this asymmetry the two protease monomers adopt different conformations burying a total of 1038 A(2) of surface area at the protease-substrate interface. The specificity for the CA-p2 substrate peptide is mainly hydrophobic, as most of the hydrogen bonds are made with the backbone of the peptide substrate. Two water molecules bridge the two monomers through the loops Gly49-Gly52 (Gly49'-Gly52') and Pro79'-Val82' (Pro79-Val82). When other complexes are compared, the mobility of these loops is correlated with the content of the P1 and P1' sites. Interdependence of the conformational changes allows the protease to exhibit its wide range of substrate specificity.

About this Structure

1F7A is a Single protein structure of sequence from Human immunodeficiency virus 1 with as ligand. Active as HIV-1 retropepsin, with EC number 3.4.23.16 Full crystallographic information is available from OCA.

Reference

How does a symmetric dimer recognize an asymmetric substrate? A substrate complex of HIV-1 protease., Prabu-Jeyabalan M, Nalivaika E, Schiffer CA, J Mol Biol. 2000 Sep 1;301(5):1207-20. PMID:10966816

Page seeded by OCA on Thu Feb 21 12:35:38 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools