Papain
From Proteopedia
Line 1: | Line 1: | ||
- | + | '''Papain''' belongs to an extended family of aminopeptidases, dipeptidyl peptidases, endopeptidases, and other enzymes having both exo- and endo-peptidase activity. The inactivated zymogen with N-terminal propeptide regions - providing stability in alkaline environments and enabling proper folding - is activated through removal of the propeptide regions. <ref>PMID: 7845226</ref> The protein is primarily secreted with its pro-region enabling transport from zymogen to lysosome through membrane association and mediation. <ref>PMID: 12188906</ref> | |
Papain. Meat tenderizer. Old time home remedy for insect, jellyfish, and stingray stings<ref>[http://www.ameriden.com/products/advanced-digestive-enzyme/] Ameridan International</ref>. Who would have thought that a sulfhydryl protease from the latex of the papaya fruit, ''Carica papaya'' and ''Vasconcellea cundinamarcensis'' would have such a practical application beyond proteopedia? | Papain. Meat tenderizer. Old time home remedy for insect, jellyfish, and stingray stings<ref>[http://www.ameriden.com/products/advanced-digestive-enzyme/] Ameridan International</ref>. Who would have thought that a sulfhydryl protease from the latex of the papaya fruit, ''Carica papaya'' and ''Vasconcellea cundinamarcensis'' would have such a practical application beyond proteopedia? | ||
Line 5: | Line 5: | ||
Papain made its first appearance in the ''Calcutta Medical Journal'' entitled “The Solvent Action of Papaya Juice on Nitrogenous Articles of Food” when G.C Roy was investigating the enzyme in 1873. In the late 19th century, Wurtz and Bouchut dubbed the partially purified enzyme "papain." <ref>Menard and Storer 1998</ref> At the time, it was viewed as a proteolytically active constituent in the latex of tropical papaya fruit. <ref>Wurtz and Bouchut 1879</ref> As separation and purification techniques improved, pure papain was able to be isolated. In becoming the second enzyme to attain an X-ray crystallized structure and the first cysteine protease to behold an identifiable structure, papain fueled greater advances in enzymatic studies. <ref>PMID: 5681232</ref> | Papain made its first appearance in the ''Calcutta Medical Journal'' entitled “The Solvent Action of Papaya Juice on Nitrogenous Articles of Food” when G.C Roy was investigating the enzyme in 1873. In the late 19th century, Wurtz and Bouchut dubbed the partially purified enzyme "papain." <ref>Menard and Storer 1998</ref> At the time, it was viewed as a proteolytically active constituent in the latex of tropical papaya fruit. <ref>Wurtz and Bouchut 1879</ref> As separation and purification techniques improved, pure papain was able to be isolated. In becoming the second enzyme to attain an X-ray crystallized structure and the first cysteine protease to behold an identifiable structure, papain fueled greater advances in enzymatic studies. <ref>PMID: 5681232</ref> | ||
- | + | Papain is a 23.4 kDa, 212 residue cysteine protease, also known as '''papaya proteinase I''', from the peptidase C1 family (E.C. 3.4.22.2).<ref name="UniProt">http://www.uniprot.org/uniprot/P00784</ref><ref name="9PAP PDB">[http://www.pdb.org/pdb/explore/explore.do?structureId=9PAP] 9PAP PDB</ref> It is the natural product of the [http://en.wikipedia.org/wiki/Carica_papaya Papaya](''Carica papaya'')<ref name="Sigma Aldrich">http://http://www.sigmaaldrich.com/life-science/metabolomics/enzyme-explorer/analytical-enzymes/papain.html</ref>, and may be extracted from the plant's latex, leaves and roots.<ref name="worthington">http://www.worthington-biochem.com/pap/default.html</ref> Papain displays a broad range of functions, acting as an endopeptidase, amidase, and esterase,<ref name="Worthington">http://www.worthington-biochem.com/pap/default.html</ref> with its optimal activity values for pH lying between 6.0 and 7.0, and its optimal temperature for activity is 65 °C. Its pI values are 8.75 and 9.55, and it is best visualized at a wavelength of 278 nm.<ref>http://www.sigmaaldrich.com/life-science/metabolomics/enzyme-explorer/analytical-enzymes/papain.html</ref> | |
Papain's enzymatic use was first discovered in 1873 by G.C. Roy who published his results in the Calcutta Medical Journal in the article, "The Solvent Action of Papaya Juice on Nitrogenous Articles of Food." In 1879, papain was named officially by Wurtz and Bouchut, who managed to partially purify the product from the sap of papaya. It wasn't until the mid-twentieth century that the complete purification and isolation of papain was achieved. In 1968, Drenth et al. determined the structure of papain by x-ray crystallography, making it the second enzyme whose structure was successfully determined by x-ray crystallography. Additionally, papain was the first cysteine protease to have its structure identified.<ref name="Worthington" /> In 1984, Kamphuis et al. determined the geometry of the active site, and the three-dimensional structure was visualized to a 1.65 Angstrom solution.<ref name="Structure">PMID:6502713</ref> Today, studies continue on the stability of papain, involving changes in environmental conditions as well as testing of inhibitors such as phenylmethanesulfonylfluoride (PMSF), TLCK, TPCK, aplh2-macroglobulin, heavy metals, AEBSF, antipain, cystatin, E-64, leupeptin, sulfhydryl binding agents, carbonyl reagents, and alkylating agents.<ref name="Worthington" /> | Papain's enzymatic use was first discovered in 1873 by G.C. Roy who published his results in the Calcutta Medical Journal in the article, "The Solvent Action of Papaya Juice on Nitrogenous Articles of Food." In 1879, papain was named officially by Wurtz and Bouchut, who managed to partially purify the product from the sap of papaya. It wasn't until the mid-twentieth century that the complete purification and isolation of papain was achieved. In 1968, Drenth et al. determined the structure of papain by x-ray crystallography, making it the second enzyme whose structure was successfully determined by x-ray crystallography. Additionally, papain was the first cysteine protease to have its structure identified.<ref name="Worthington" /> In 1984, Kamphuis et al. determined the geometry of the active site, and the three-dimensional structure was visualized to a 1.65 Angstrom solution.<ref name="Structure">PMID:6502713</ref> Today, studies continue on the stability of papain, involving changes in environmental conditions as well as testing of inhibitors such as phenylmethanesulfonylfluoride (PMSF), TLCK, TPCK, aplh2-macroglobulin, heavy metals, AEBSF, antipain, cystatin, E-64, leupeptin, sulfhydryl binding agents, carbonyl reagents, and alkylating agents.<ref name="Worthington" /> | ||
Line 63: | Line 63: | ||
[[Category: Kamphuis, I G.]] | [[Category: Kamphuis, I G.]] | ||
- | ==Papain== | + | ==3D Structures of Papain== |
[[3LFY]], [[1KHP]], [[1KHQ]], [[1CVZ]], [[1BQI]], [[1BP4]], [[1PPN]], [[1PPP]], [[1PIP]], [[1POP]], [[1PE6]], [[9PAP]], [[1PPD]], [[1PAD]], [[2PAD]], [[4PAD]], [[5PAD]], [[6PAD]]- ''Carica papaya'' | [[3LFY]], [[1KHP]], [[1KHQ]], [[1CVZ]], [[1BQI]], [[1BP4]], [[1PPN]], [[1PPP]], [[1PIP]], [[1POP]], [[1PE6]], [[9PAP]], [[1PPD]], [[1PAD]], [[2PAD]], [[4PAD]], [[5PAD]], [[6PAD]]- ''Carica papaya'' | ||
+ | |||
+ | [[3IMA]] - ''Colocasia esculenta'' | ||
+ | |||
+ | [[1STF]] - ''Homo sapiens'' | ||
[[2CIO]] - ''Trypanosoma brucei'' | [[2CIO]] - ''Trypanosoma brucei'' | ||
Line 71: | Line 75: | ||
[[3E1Z]] - ''Trypanosoma cruzi'' | [[3E1Z]] - ''Trypanosoma cruzi'' | ||
- | [[3IMA]] - ''Colocasia esculenta'' | ||
- | + | ||
+ | |||
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Feb 17 04:20:31 2009'' | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Tue Feb 17 04:20:31 2009'' |
Revision as of 00:58, 4 April 2012
Papain belongs to an extended family of aminopeptidases, dipeptidyl peptidases, endopeptidases, and other enzymes having both exo- and endo-peptidase activity. The inactivated zymogen with N-terminal propeptide regions - providing stability in alkaline environments and enabling proper folding - is activated through removal of the propeptide regions. [1] The protein is primarily secreted with its pro-region enabling transport from zymogen to lysosome through membrane association and mediation. [2]
Papain. Meat tenderizer. Old time home remedy for insect, jellyfish, and stingray stings[3]. Who would have thought that a sulfhydryl protease from the latex of the papaya fruit, Carica papaya and Vasconcellea cundinamarcensis would have such a practical application beyond proteopedia?
Papain made its first appearance in the Calcutta Medical Journal entitled “The Solvent Action of Papaya Juice on Nitrogenous Articles of Food” when G.C Roy was investigating the enzyme in 1873. In the late 19th century, Wurtz and Bouchut dubbed the partially purified enzyme "papain." [4] At the time, it was viewed as a proteolytically active constituent in the latex of tropical papaya fruit. [5] As separation and purification techniques improved, pure papain was able to be isolated. In becoming the second enzyme to attain an X-ray crystallized structure and the first cysteine protease to behold an identifiable structure, papain fueled greater advances in enzymatic studies. [6]
Papain is a 23.4 kDa, 212 residue cysteine protease, also known as papaya proteinase I, from the peptidase C1 family (E.C. 3.4.22.2).[7][8] It is the natural product of the Papaya(Carica papaya)[9], and may be extracted from the plant's latex, leaves and roots.[10] Papain displays a broad range of functions, acting as an endopeptidase, amidase, and esterase,[11] with its optimal activity values for pH lying between 6.0 and 7.0, and its optimal temperature for activity is 65 °C. Its pI values are 8.75 and 9.55, and it is best visualized at a wavelength of 278 nm.[12]
Papain's enzymatic use was first discovered in 1873 by G.C. Roy who published his results in the Calcutta Medical Journal in the article, "The Solvent Action of Papaya Juice on Nitrogenous Articles of Food." In 1879, papain was named officially by Wurtz and Bouchut, who managed to partially purify the product from the sap of papaya. It wasn't until the mid-twentieth century that the complete purification and isolation of papain was achieved. In 1968, Drenth et al. determined the structure of papain by x-ray crystallography, making it the second enzyme whose structure was successfully determined by x-ray crystallography. Additionally, papain was the first cysteine protease to have its structure identified.[11] In 1984, Kamphuis et al. determined the geometry of the active site, and the three-dimensional structure was visualized to a 1.65 Angstrom solution.[13] Today, studies continue on the stability of papain, involving changes in environmental conditions as well as testing of inhibitors such as phenylmethanesulfonylfluoride (PMSF), TLCK, TPCK, aplh2-macroglobulin, heavy metals, AEBSF, antipain, cystatin, E-64, leupeptin, sulfhydryl binding agents, carbonyl reagents, and alkylating agents.[11]
Contents |
Structure
|
Inhibitors
|
Common Uses
Medicinal

Papain has been used for a plethora of medicinal purposes including treating inflammation, shingles, diarrhea, psoriasis, parasites, and many others.[22] One major use is the treatment of cutaneous ulcers including diabetic ulcers and pressure ulcers.[23] Pressures ulcers plague many bed bound individuals and are a major source of pain and discomfort. Two papain based topical drugs are Accuzyme and Panafil, which can be used to treat wounds like cutaneous ulcers.[24]
A recent New York Times article featured papain and other digestive enzymes.[25] With the number of individuals suffering from irritable bowel syndrome and other gastrointestinal issues, many people are turning toward natural digestive aid supplements like papain. The author even talks about the use of papain along with a pineapple enzyme, bromelain, in cosmetic facial masks. Dr. Adam R. Kolker (a plastic surgeon) is quoted in the article saying that "For skin that is sensitive, enzymes are wonderful." He bases these claims off the idea that proteases like papain help to break peptide bonds holding dead skin cells to the live skin cells.[26]
Commercial and Biomedical
Papain digests most proteins, often more extensively than pancreatic proteases. It has a very broad specificity and is known to cleave peptide bonds of basic amino acids and leucine and glycine residues, but prefers amino acids with large hydrophobic side chains. This non-specific nature of papain's hydrolase activity has led to its use in many and varied commercial products. It is often used as a meat tenderizer because it can hydrolyze the peptide bonds of collagen, elastin, and actomyosin. It is also used in contact lens solution to remove protein deposits on the lenses and marketed as a digestive supplement. [27] Finally, papain has several common uses in general biomedical research, including a gentle cell isolation agent, production of glycopeptides from purified proteoglycans, and solubilization of integral membrane proteins. It is also notable for its ability to specifically cleave IgG and IgM antibodies above and below the disulfide bonds that join the heavy chains and that is found between the light chain and heavy chain. This generates two monovalent Fab segments, that each have a single antibody binding sites, and an intact Fc fragment.[11]
Reference
- Kamphuis IG, Kalk KH, Swarte MB, Drenth J. Structure of papain refined at 1.65 A resolution. J Mol Biol. 1984 Oct 25;179(2):233-56. PMID:6502713
3D Structures of Papain
3LFY, 1KHP, 1KHQ, 1CVZ, 1BQI, 1BP4, 1PPN, 1PPP, 1PIP, 1POP, 1PE6, 9PAP, 1PPD, 1PAD, 2PAD, 4PAD, 5PAD, 6PAD- Carica papaya
3IMA - Colocasia esculenta
1STF - Homo sapiens
2CIO - Trypanosoma brucei
3E1Z - Trypanosoma cruzi
Page seeded by OCA on Tue Feb 17 04:20:31 2009
Proteopedia Page Contributors and Editors (what is this?)
Kirsten Eldredge, Jacinth Koh, Sara Kongkatong, Kyle Burch, Michal Harel, Joel L. Sussman, Elizabeth Miller, Samuel Bray, David Canner, Jaime Prilusky