3um3

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
[[Image:3um3.png|left|200px]]
 
- 
-
<!--
 
-
The line below this paragraph, containing "STRUCTURE_3um3", creates the "Structure Box" on the page.
 
-
You may change the PDB parameter (which sets the PDB file loaded into the applet)
 
-
or the SCENE parameter (which sets the initial scene displayed when the page is loaded),
 
-
or leave the SCENE parameter empty for the default display.
 
-
-->
 
{{STRUCTURE_3um3| PDB=3um3 | SCENE= }}
{{STRUCTURE_3um3| PDB=3um3 | SCENE= }}
- 
===Crystal structure of the Brox Bro1 domain in complex with the C-terminal tail of CHMP4B===
===Crystal structure of the Brox Bro1 domain in complex with the C-terminal tail of CHMP4B===
 +
{{ABSTRACT_PUBMED_22484091}}
 +
==Disease==
 +
[[http://www.uniprot.org/uniprot/CHM4B_HUMAN CHM4B_HUMAN]] Defects in CHMP4B are the cause of cataract posterior polar type 3 (CTPP3) [MIM:[http://omim.org/entry/605387 605387]]. A subcapsular opacity, usually disk-shaped, located at the back of the lens. It can have a marked effect on visual acuity.<ref>PMID:17701905</ref>
-
<!--
+
==Function==
-
The line below this paragraph, {{ABSTRACT_PUBMED_22484091}}, adds the Publication Abstract to the page
+
[[http://www.uniprot.org/uniprot/CHM4B_HUMAN CHM4B_HUMAN]] Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. When overexpressed, membrane-assembled circular arrays of CHMP4B filaments can promote or stabilize negative curvature and outward budding. Via its interaction with PDCD6IP involved in HIV-1 p6- and p9-dependent virus release.<ref>PMID:12860994</ref><ref>PMID:14505569</ref><ref>PMID:14505570</ref><ref>PMID:14519844</ref><ref>PMID:18209100</ref>
-
(as it appears on PubMed at http://www.pubmed.gov), where 22484091 is the PubMed ID number.
+
-
-->
+
-
{{ABSTRACT_PUBMED_22484091}}
+
==About this Structure==
==About this Structure==
Line 22: Line 13:
==Reference==
==Reference==
-
<ref group="xtra">PMID:022484091</ref><references group="xtra"/>
+
<ref group="xtra">PMID:022484091</ref><references group="xtra"/><references/>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Jiang, J S.]]
[[Category: Jiang, J S.]]

Revision as of 20:48, 24 March 2013

Template:STRUCTURE 3um3

Contents

Crystal structure of the Brox Bro1 domain in complex with the C-terminal tail of CHMP4B

Template:ABSTRACT PUBMED 22484091

Disease

[CHM4B_HUMAN] Defects in CHMP4B are the cause of cataract posterior polar type 3 (CTPP3) [MIM:605387]. A subcapsular opacity, usually disk-shaped, located at the back of the lens. It can have a marked effect on visual acuity.[1]

Function

[CHM4B_HUMAN] Probable core component of the endosomal sorting required for transport complex III (ESCRT-III) which is involved in multivesicular bodies (MVBs) formation and sorting of endosomal cargo proteins into MVBs. MVBs contain intraluminal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome and mostly are delivered to lysosomes enabling degradation of membrane proteins, such as stimulated growth factor receptors, lysosomal enzymes and lipids. The MVB pathway appears to require the sequential function of ESCRT-O, -I,-II and -III complexes. ESCRT-III proteins mostly dissociate from the invaginating membrane before the ILV is released. The ESCRT machinery also functions in topologically equivalent membrane fission events, such as the terminal stages of cytokinesis and the budding of enveloped viruses (HIV-1 and other lentiviruses). ESCRT-III proteins are believed to mediate the necessary vesicle extrusion and/or membrane fission activities, possibly in conjunction with the AAA ATPase VPS4. When overexpressed, membrane-assembled circular arrays of CHMP4B filaments can promote or stabilize negative curvature and outward budding. Via its interaction with PDCD6IP involved in HIV-1 p6- and p9-dependent virus release.[2][3][4][5][6]

About this Structure

3um3 is a 2 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

  • Mu R, Dussupt V, Jiang J, Sette P, Rudd V, Chuenchor W, Bello NF, Bouamr F, Xiao TS. Two Distinct Binding Modes Define the Interaction of Brox with the C-Terminal Tails of CHMP5 and CHMP4B. Structure. 2012 May 9;20(5):887-98. Epub 2012 Apr 5. PMID:22484091 doi:10.1016/j.str.2012.03.001
  1. Shiels A, Bennett TM, Knopf HL, Yamada K, Yoshiura K, Niikawa N, Shim S, Hanson PI. CHMP4B, a novel gene for autosomal dominant cataracts linked to chromosome 20q. Am J Hum Genet. 2007 Sep;81(3):596-606. Epub 2007 Jul 27. PMID:17701905 doi:S0002-9297(07)61356-1
  2. Katoh K, Shibata H, Suzuki H, Nara A, Ishidoh K, Kominami E, Yoshimori T, Maki M. The ALG-2-interacting protein Alix associates with CHMP4b, a human homologue of yeast Snf7 that is involved in multivesicular body sorting. J Biol Chem. 2003 Oct 3;278(40):39104-13. Epub 2003 Jul 14. PMID:12860994 doi:10.1074/jbc.M301604200
  3. Strack B, Calistri A, Craig S, Popova E, Gottlinger HG. AIP1/ALIX is a binding partner for HIV-1 p6 and EIAV p9 functioning in virus budding. Cell. 2003 Sep 19;114(6):689-99. PMID:14505569
  4. von Schwedler UK, Stuchell M, Muller B, Ward DM, Chung HY, Morita E, Wang HE, Davis T, He GP, Cimbora DM, Scott A, Krausslich HG, Kaplan J, Morham SG, Sundquist WI. The protein network of HIV budding. Cell. 2003 Sep 19;114(6):701-13. PMID:14505570
  5. Martin-Serrano J, Yarovoy A, Perez-Caballero D, Bieniasz PD. Divergent retroviral late-budding domains recruit vacuolar protein sorting factors by using alternative adaptor proteins. Proc Natl Acad Sci U S A. 2003 Oct 14;100(21):12414-9. Epub 2003 Sep 30. PMID:14519844 doi:10.1073/pnas.2133846100
  6. Hanson PI, Roth R, Lin Y, Heuser JE. Plasma membrane deformation by circular arrays of ESCRT-III protein filaments. J Cell Biol. 2008 Jan 28;180(2):389-402. Epub 2008 Jan 21. PMID:18209100 doi:jcb.200707031

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools