1dgw
From Proteopedia
Line 1: | Line 1: | ||
- | [[Image:1dgw.jpg|left|200px]] | + | [[Image:1dgw.jpg|left|200px]] |
- | + | ||
- | '''Structure of the rhombohedral crystal of canavalin from jack bean''' | + | {{Structure |
+ | |PDB= 1dgw |SIZE=350|CAPTION= <scene name='initialview01'>1dgw</scene>, resolution 1.7Å | ||
+ | |SITE= | ||
+ | |LIGAND= <scene name='pdbligand=PO4:PHOSPHATE ION'>PO4</scene> | ||
+ | |ACTIVITY= | ||
+ | |GENE= | ||
+ | }} | ||
+ | |||
+ | '''Structure of the rhombohedral crystal of canavalin from jack bean''' | ||
+ | |||
==Overview== | ==Overview== | ||
Line 7: | Line 16: | ||
==About this Structure== | ==About this Structure== | ||
- | 1DGW is a [ | + | 1DGW is a [[Protein complex]] structure of sequences from [http://en.wikipedia.org/wiki/Canavalia_ensiformis Canavalia ensiformis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1DGW OCA]. |
==Reference== | ==Reference== | ||
- | X-ray diffraction and atomic force microscopy analysis of twinned crystals: rhombohedral canavalin., Ko TP, Kuznetsov YG, Malkin AJ, Day J, McPherson A, Acta Crystallogr D Biol Crystallogr. 2001 Jun;57(Pt 6):829-39. Epub 2001, May 25. PMID:[http:// | + | X-ray diffraction and atomic force microscopy analysis of twinned crystals: rhombohedral canavalin., Ko TP, Kuznetsov YG, Malkin AJ, Day J, McPherson A, Acta Crystallogr D Biol Crystallogr. 2001 Jun;57(Pt 6):829-39. Epub 2001, May 25. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/11375502 11375502] |
[[Category: Canavalia ensiformis]] | [[Category: Canavalia ensiformis]] | ||
[[Category: Protein complex]] | [[Category: Protein complex]] | ||
Line 16: | Line 25: | ||
[[Category: McPherson, A.]] | [[Category: McPherson, A.]] | ||
[[Category: PO4]] | [[Category: PO4]] | ||
- | [[Category: duplicated swiss-roll beta | + | [[Category: duplicated swiss-roll beta barrel]] |
- | [[Category: loops with alpha | + | [[Category: loops with alpha helice]] |
[[Category: merohedral/ hemihedral twinning]] | [[Category: merohedral/ hemihedral twinning]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 10:38:29 2008'' |
Revision as of 08:38, 20 March 2008
| |||||||
, resolution 1.7Å | |||||||
---|---|---|---|---|---|---|---|
Ligands: | |||||||
Coordinates: | save as pdb, mmCIF, xml |
Structure of the rhombohedral crystal of canavalin from jack bean
Overview
The structure of canavalin, the vicilin-class storage protein from jack bean, was refined to 1.7 A resolution in a highly twinned rhombohedral crystal of space group R3 and unit-cell parameters a = b = c = 83.0 A, alpha = beta = gamma = 111.1 degrees. The resulting R and R(free) were 0.176 and 0.245, respectively. The orthorhombic crystal structure (space group C222(1), unit-cell parameters a = 136.5, b = 150.3, c = 133.4 A) was also refined with threefold non-crystallographic symmetry restraints. R and R(free) were 0.181 and 0.226, respectively, for 2.6 A resolution data. No significant difference in the protein structure was seen between these two crystal forms, nor between these two and the hexagonal and cubic crystal forms reported elsewhere [Ko et al. (1993), Acta Cryst. D49, 478-489; Ko et al. (1993), Plant Physiol. 101, 729-744]. A phosphate ion was identified in the lumen of the C-terminal beta-barrel. Lattice interactions showed that the trimeric molecule could be well accommodated in both 'top-up' and 'bottom-up' orientations in a rhombohedral unit cell of the R3 crystal and explained the presence of a high twin fraction. The large inter-trimer stacking interface of the C222(1) crystal may account for its relative stability. Atomic force microscopy (AFM) investigations of the growth of three crystal forms of canavalin indicate the rhombohedral form to be unique. Unlike the other two crystal forms, it contains at least an order of magnitude more screw dislocations and stacking faults than any other macromolecular crystal yet studied, and it alone grows principally by generation of steps from the screw dislocations. The unusually high occurrence of the screw dislocations and stacking faults is attributed to mechanical stress produced by the alternate molecular orientations in the rhombohedral crystals and their organization into discrete domains or blocks. At boundaries of alternate domains, lattice strain is relieved by the formation of the screw dislocations.
About this Structure
1DGW is a Protein complex structure of sequences from Canavalia ensiformis. Full crystallographic information is available from OCA.
Reference
X-ray diffraction and atomic force microscopy analysis of twinned crystals: rhombohedral canavalin., Ko TP, Kuznetsov YG, Malkin AJ, Day J, McPherson A, Acta Crystallogr D Biol Crystallogr. 2001 Jun;57(Pt 6):829-39. Epub 2001, May 25. PMID:11375502
Page seeded by OCA on Thu Mar 20 10:38:29 2008