4fz3
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | ''' | + | ==Crystal structure of SIRT3 in complex with acetyl p53 peptide coupled with 4-amino-7-methylcoumarin== |
+ | <StructureSection load='4fz3' size='340' side='right' caption='[[4fz3]], [[Resolution|resolution]] 2.10Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[4fz3]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4FZ3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4FZ3 FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACE:ACETYL+GROUP'>ACE</scene>, <scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene>, <scene name='pdbligand=MCM:7-AMINO-4-METHYL-CHROMEN-2-ONE'>MCM</scene></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SIRT3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4fz3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4fz3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4fz3 RCSB], [http://www.ebi.ac.uk/pdbsum/4fz3 PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Disease == | ||
+ | [[http://www.uniprot.org/uniprot/P53_HUMAN P53_HUMAN]] Note=TP53 is found in increased amounts in a wide variety of transformed cells. TP53 is frequently mutated or inactivated in about 60% of cancers. TP53 defects are found in Barrett metaplasia a condition in which the normally stratified squamous epithelium of the lower esophagus is replaced by a metaplastic columnar epithelium. The condition develops as a complication in approximately 10% of patients with chronic gastroesophageal reflux disease and predisposes to the development of esophageal adenocarcinoma. Defects in TP53 are a cause of esophageal cancer (ESCR) [MIM:[http://omim.org/entry/133239 133239]]. Defects in TP53 are a cause of Li-Fraumeni syndrome (LFS) [MIM:[http://omim.org/entry/151623 151623]]. LFS is an autosomal dominant familial cancer syndrome that in its classic form is defined by the existence of a proband affected by a sarcoma before 45 years with a first degree relative affected by any tumor before 45 years and another first degree relative with any tumor before 45 years or a sarcoma at any age. Other clinical definitions for LFS have been proposed (PubMed:8118819 and PubMed:8718514) and called Li-Fraumeni like syndrome (LFL). In these families affected relatives develop a diverse set of malignancies at unusually early ages. Four types of cancers account for 80% of tumors occurring in TP53 germline mutation carriers: breast cancers, soft tissue and bone sarcomas, brain tumors (astrocytomas) and adrenocortical carcinomas. Less frequent tumors include choroid plexus carcinoma or papilloma before the age of 15, rhabdomyosarcoma before the age of 5, leukemia, Wilms tumor, malignant phyllodes tumor, colorectal and gastric cancers.<ref>PMID:10570149</ref> <ref>PMID:1933902</ref> <ref>PMID:1978757</ref> <ref>PMID:2259385</ref> <ref>PMID:1737852</ref> <ref>PMID:1565144</ref> <ref>PMID:7887414</ref> <ref>PMID:8825920</ref> <ref>PMID:9452042</ref> <ref>PMID:10484981</ref> Defects in TP53 are involved in head and neck squamous cell carcinomas (HNSCC) [MIM:[http://omim.org/entry/275355 275355]]; also known as squamous cell carcinoma of the head and neck. Defects in TP53 are a cause of lung cancer (LNCR) [MIM:[http://omim.org/entry/211980 211980]]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis. Defects in TP53 are a cause of choroid plexus papilloma (CPLPA) [MIM:[http://omim.org/entry/260500 260500]]. Choroid plexus papilloma is a slow-growing benign tumor of the choroid plexus that often invades the leptomeninges. In children it is usually in a lateral ventricle but in adults it is more often in the fourth ventricle. Hydrocephalus is common, either from obstruction or from tumor secretion of cerebrospinal fluid. If it undergoes malignant transformation it is called a choroid plexus carcinoma. Primary choroid plexus tumors are rare and usually occur in early childhood.<ref>PMID:12085209</ref> Defects in TP53 are a cause of adrenocortical carcinoma (ADCC) [MIM:[http://omim.org/entry/202300 202300]]. ADCC is a rare childhood tumor of the adrenal cortex. It occurs with increased frequency in patients with the Beckwith-Wiedemann syndrome and is a component tumor in Li-Fraumeni syndrome.<ref>PMID:11481490</ref> Defects in TP53 are the cause of susceptibility to basal cell carcinoma 7 (BCC7) [MIM:[http://omim.org/entry/614740 614740]]. A common malignant skin neoplasm that typically appears on hair-bearing skin, most commonly on sun-exposed areas. It is slow growing and rarely metastasizes, but has potentialities for local invasion and destruction. It usually develops as a flat, firm, pale area that is small, raised, pink or red, translucent, shiny, and waxy, and the area may bleed following minor injury. Tumor size can vary from a few millimeters to several centimeters in diameter.<ref>PMID:21946351</ref> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/SIR3_HUMAN SIR3_HUMAN]] NAD-dependent protein deacetylase. Activates mitochondrial target proteins, including ACSS1, IDH2 and GDH by deacetylating key lysine residues. Contributes to the regulation of the cellular energy metabolism. Important for regulating tissue-specific ATP levels.<ref>PMID:16788062</ref> <ref>PMID:18680753</ref> <ref>PMID:18794531</ref> <ref>PMID:19535340</ref> [[http://www.uniprot.org/uniprot/P53_HUMAN P53_HUMAN]] Acts as a tumor suppressor in many tumor types; induces growth arrest or apoptosis depending on the physiological circumstances and cell type. Involved in cell cycle regulation as a trans-activator that acts to negatively regulate cell division by controlling a set of genes required for this process. One of the activated genes is an inhibitor of cyclin-dependent kinases. Apoptosis induction seems to be mediated either by stimulation of BAX and FAS antigen expression, or by repression of Bcl-2 expression. In cooperation with mitochondrial PPIF is involved in activating oxidative stress-induced necrosis; te function is largely independent of transcription. Induces the transcription of long intergenic non-coding RNA p21 (lincRNA-p21) and lincRNA-Mkln1. LincRNA-p21 participates in TP53-dependent transcriptional repression leading to apoptosis and seem to have to effect on cell-cycle regulation. Implicated in Notch signaling cross-over. Prevents CDK7 kinase activity when associated to CAK complex in response to DNA damage, thus stopping cell cycle progression. Isoform 2 enhances the transactivation activity of isoform 1 from some but not all TP53-inducible promoters. Isoform 4 suppresses transactivation activity and impairs growth suppression mediated by isoform 1. Isoform 7 inhibits isoform 1-mediated apoptosis.<ref>PMID:9840937</ref> <ref>PMID:11025664</ref> <ref>PMID:12810724</ref> <ref>PMID:15186775</ref> <ref>PMID:15340061</ref> <ref>PMID:17317671</ref> <ref>PMID:17349958</ref> <ref>PMID:19556538</ref> <ref>PMID:20673990</ref> <ref>PMID:20959462</ref> <ref>PMID:22726440</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | SIRT1 is an NAD(+)-dependent deacetylase, whose activators have potential therapeutic applications in age-related diseases. Here we report a new class of SIRT1 activators. The activation is dependent on the fluorophore labeled to the substrate. To elucidate the activation mechanism, we solved the crystal structure of SIRT3/ac-RHKK(ac)-AMC complex. The structure revealed that the fluorophore blocked the H-bond formation and created a cavity between the substrate and the Rossmann fold. We built the SIRT1/ac-RHKK(ac)-AMC complex model based on the crystal structure. K(m) and K(d) determinations demonstrated that the fluorophore decreased the peptide binding affinity. The binding modes of SIRT1 activators indicated that a portion of the activators interacts with the fluorophore through pi-stacking, while the other portion inserts into the cavity or interacts with the Rossmann fold, thus increasing the substrate affinity. Our study provides new insights into the mechanism of SIRT1 activation and may aid the design of novel SIRT1 activators. | ||
- | + | Discovery and Mechanism Study of SIRT1 Activators that Promote the Deacetylation of Fluorophore-Labeled Substrate.,Wu J, Zhang D, Chen L, Li J, Wang J, Ning C, Yu N, Zhao F, Chen D, Chen X, Chen K, Jiang H, Liu H, Liu D J Med Chem. 2013 Feb 14;56(3):761-80. doi: 10.1021/jm301032j. Epub 2013 Jan 28. PMID:23316803<ref>PMID:23316803</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Human]] | ||
+ | [[Category: Chen, K.]] | ||
+ | [[Category: Jiang, H.]] | ||
+ | [[Category: Liu, D.]] | ||
+ | [[Category: Liu, H.]] | ||
+ | [[Category: Wu, J.]] | ||
+ | [[Category: Zhang, D.]] | ||
+ | [[Category: Hydrolase-hydrolase substrate complex]] | ||
+ | [[Category: Mitochondrial]] | ||
+ | [[Category: Nad-dependent deacetylase]] | ||
+ | [[Category: Rossmann fold]] | ||
+ | [[Category: Zinc-binding motif]] |
Revision as of 10:28, 16 June 2014
Crystal structure of SIRT3 in complex with acetyl p53 peptide coupled with 4-amino-7-methylcoumarin
|