1qr1
From Proteopedia
Line 1: | Line 1: | ||
- | [[Image:1qr1.png|left|200px]] | ||
- | |||
{{STRUCTURE_1qr1| PDB=1qr1 | SCENE= }} | {{STRUCTURE_1qr1| PDB=1qr1 | SCENE= }} | ||
- | |||
===POOR BINDING OF A HER-2/NEU EPITOPE (GP2) TO HLA-A2.1 IS DUE TO A LACK OF INTERACTIONS IN THE CENTER OF THE PEPTIDE=== | ===POOR BINDING OF A HER-2/NEU EPITOPE (GP2) TO HLA-A2.1 IS DUE TO A LACK OF INTERACTIONS IN THE CENTER OF THE PEPTIDE=== | ||
+ | {{ABSTRACT_PUBMED_10593938}} | ||
- | + | ==Disease== | |
+ | [[http://www.uniprot.org/uniprot/ERBB2_HUMAN ERBB2_HUMAN]] Defects in ERBB2 are a cause of hereditary diffuse gastric cancer (HDGC) [MIM:[http://omim.org/entry/137215 137215]]. A cancer predisposition syndrome with increased susceptibility to diffuse gastric cancer. Diffuse gastric cancer is a malignant disease characterized by poorly differentiated infiltrating lesions resulting in thickening of the stomach. Malignant tumors start in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. Defects in ERBB2 are involved in the development of glioma (GLM) [MIM:[http://omim.org/entry/137800 137800]]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Defects in ERBB2 are a cause of susceptibility to ovarian cancer (OC) [MIM:[http://omim.org/entry/167000 167000]]. Ovarian cancer common malignancy originating from ovarian tissue. Although many histologic types of ovarian neoplasms have been described, epithelial ovarian carcinoma is the most common form. Ovarian cancers are often asymptomatic and the recognized signs and symptoms, even of late-stage disease, are vague. Consequently, most patients are diagnosed with advanced disease. Defects in ERBB2 may be a cause of lung cancer (LNCR) [MIM:[http://omim.org/entry/211980 211980]]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis. Defects in ERBB2 are a cause of gastric cancer (GASC) [MIM:[http://omim.org/entry/613659 613659]]. A malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease. Note=Chromosomal aberrations involving ERBB2 may be a cause gastric cancer. Deletions within 17q12 region producing fusion transcripts with CDK12, leading to CDK12-ERBB2 fusion leading to truncated CDK12 protein not in-frame with ERBB2. [[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:[http://omim.org/entry/241600 241600]]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.<ref>PMID:16549777</ref> Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.<ref>PMID:3532124</ref><ref>PMID:1336137</ref><ref>PMID:7554280</ref><ref>PMID:4586824</ref><ref>PMID:8084451</ref><ref>PMID:12119416</ref><ref>PMID:12796775</ref><ref>PMID:16901902</ref><ref>PMID:16491088</ref><ref>PMID:17646174</ref><ref>PMID:18835253</ref><ref>PMID:18395224</ref><ref>PMID:19284997</ref> | ||
+ | |||
+ | ==Function== | ||
+ | [[http://www.uniprot.org/uniprot/1A02_HUMAN 1A02_HUMAN]] Involved in the presentation of foreign antigens to the immune system. [[http://www.uniprot.org/uniprot/ERBB2_HUMAN ERBB2_HUMAN]] Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization.<ref>PMID:10358079</ref><ref>PMID:15380516</ref><ref>PMID:16794579</ref><ref>PMID:19372587</ref><ref>PMID:20937854</ref><ref>PMID:21555369</ref> In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth.<ref>PMID:10358079</ref><ref>PMID:15380516</ref><ref>PMID:16794579</ref><ref>PMID:19372587</ref><ref>PMID:20937854</ref><ref>PMID:21555369</ref> [[http://www.uniprot.org/uniprot/B2MG_HUMAN B2MG_HUMAN]] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system. | ||
==About this Structure== | ==About this Structure== | ||
Line 14: | Line 16: | ||
==Reference== | ==Reference== | ||
- | <ref group="xtra">PMID:010593938</ref><references group="xtra"/> | + | <ref group="xtra">PMID:010593938</ref><references group="xtra"/><references/> |
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Batalia, M. A.]] | [[Category: Batalia, M. A.]] |
Revision as of 16:27, 24 March 2013
Contents |
POOR BINDING OF A HER-2/NEU EPITOPE (GP2) TO HLA-A2.1 IS DUE TO A LACK OF INTERACTIONS IN THE CENTER OF THE PEPTIDE
Template:ABSTRACT PUBMED 10593938
Disease
[ERBB2_HUMAN] Defects in ERBB2 are a cause of hereditary diffuse gastric cancer (HDGC) [MIM:137215]. A cancer predisposition syndrome with increased susceptibility to diffuse gastric cancer. Diffuse gastric cancer is a malignant disease characterized by poorly differentiated infiltrating lesions resulting in thickening of the stomach. Malignant tumors start in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. Defects in ERBB2 are involved in the development of glioma (GLM) [MIM:137800]. Gliomas are central nervous system neoplasms derived from glial cells and comprise astrocytomas, glioblastoma multiforme, oligodendrogliomas, and ependymomas. Defects in ERBB2 are a cause of susceptibility to ovarian cancer (OC) [MIM:167000]. Ovarian cancer common malignancy originating from ovarian tissue. Although many histologic types of ovarian neoplasms have been described, epithelial ovarian carcinoma is the most common form. Ovarian cancers are often asymptomatic and the recognized signs and symptoms, even of late-stage disease, are vague. Consequently, most patients are diagnosed with advanced disease. Defects in ERBB2 may be a cause of lung cancer (LNCR) [MIM:211980]. LNCR is a common malignancy affecting tissues of the lung. The most common form of lung cancer is non-small cell lung cancer (NSCLC) that can be divided into 3 major histologic subtypes: squamous cell carcinoma, adenocarcinoma, and large cell lung cancer. NSCLC is often diagnosed at an advanced stage and has a poor prognosis. Defects in ERBB2 are a cause of gastric cancer (GASC) [MIM:613659]. A malignant disease which starts in the stomach, can spread to the esophagus or the small intestine, and can extend through the stomach wall to nearby lymph nodes and organs. It also can metastasize to other parts of the body. The term gastric cancer or gastric carcinoma refers to adenocarcinoma of the stomach that accounts for most of all gastric malignant tumors. Two main histologic types are recognized, diffuse type and intestinal type carcinomas. Diffuse tumors are poorly differentiated infiltrating lesions resulting in thickening of the stomach. In contrast, intestinal tumors are usually exophytic, often ulcerating, and associated with intestinal metaplasia of the stomach, most often observed in sporadic disease. Note=Chromosomal aberrations involving ERBB2 may be a cause gastric cancer. Deletions within 17q12 region producing fusion transcripts with CDK12, leading to CDK12-ERBB2 fusion leading to truncated CDK12 protein not in-frame with ERBB2. [B2MG_HUMAN] Defects in B2M are the cause of hypercatabolic hypoproteinemia (HYCATHYP) [MIM:241600]. Affected individuals show marked reduction in serum concentrations of immunoglobulin and albumin, probably due to rapid degradation.[1] Note=Beta-2-microglobulin may adopt the fibrillar configuration of amyloid in certain pathologic states. The capacity to assemble into amyloid fibrils is concentration dependent. Persistently high beta(2)-microglobulin serum levels lead to amyloidosis in patients on long-term hemodialysis.[2][3][4][5][6][7][8][9][10][11][12][13][14]
Function
[1A02_HUMAN] Involved in the presentation of foreign antigens to the immune system. [ERBB2_HUMAN] Protein tyrosine kinase that is part of several cell surface receptor complexes, but that apparently needs a coreceptor for ligand binding. Essential component of a neuregulin-receptor complex, although neuregulins do not interact with it alone. GP30 is a potential ligand for this receptor. Regulates outgrowth and stabilization of peripheral microtubules (MTs). Upon ERBB2 activation, the MEMO1-RHOA-DIAPH1 signaling pathway elicits the phosphorylation and thus the inhibition of GSK3B at cell membrane. This prevents the phosphorylation of APC and CLASP2, allowing its association with the cell membrane. In turn, membrane-bound APC allows the localization of MACF1 to the cell membrane, which is required for microtubule capture and stabilization.[15][16][17][18][19][20] In the nucleus is involved in transcriptional regulation. Associates with the 5'-TCAAATTC-3' sequence in the PTGS2/COX-2 promoter and activates its transcription. Implicated in transcriptional activation of CDKN1A; the function involves STAT3 and SRC. Involved in the transcription of rRNA genes by RNA Pol I and enhances protein synthesis and cell growth.[21][22][23][24][25][26] [B2MG_HUMAN] Component of the class I major histocompatibility complex (MHC). Involved in the presentation of peptide antigens to the immune system.
About this Structure
1qr1 is a 6 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.
See Also
Reference
- Kuhns JJ, Batalia MA, Yan S, Collins EJ. Poor binding of a HER-2/neu epitope (GP2) to HLA-A2.1 is due to a lack of interactions with the center of the peptide. J Biol Chem. 1999 Dec 17;274(51):36422-7. PMID:10593938
- ↑ Wani MA, Haynes LD, Kim J, Bronson CL, Chaudhury C, Mohanty S, Waldmann TA, Robinson JM, Anderson CL. Familial hypercatabolic hypoproteinemia caused by deficiency of the neonatal Fc receptor, FcRn, due to a mutant beta2-microglobulin gene. Proc Natl Acad Sci U S A. 2006 Mar 28;103(13):5084-9. Epub 2006 Mar 20. PMID:16549777 doi:10.1073/pnas.0600548103
- ↑ Gorevic PD, Munoz PC, Casey TT, DiRaimondo CR, Stone WJ, Prelli FC, Rodrigues MM, Poulik MD, Frangione B. Polymerization of intact beta 2-microglobulin in tissue causes amyloidosis in patients on chronic hemodialysis. Proc Natl Acad Sci U S A. 1986 Oct;83(20):7908-12. PMID:3532124
- ↑ Argiles A, Derancourt J, Jauregui-Adell J, Mion C, Demaille JG. Biochemical characterization of serum and urinary beta 2 microglobulin in end-stage renal disease patients. Nephrol Dial Transplant. 1992;7(11):1106-10. PMID:1336137
- ↑ Momoi T, Suzuki M, Titani K, Hisanaga S, Ogawa H, Saito A. Amino acid sequence of a modified beta 2-microglobulin in renal failure patient urine and long-term dialysis patient blood. Clin Chim Acta. 1995 May 15;236(2):135-44. PMID:7554280
- ↑ Cunningham BA, Wang JL, Berggard I, Peterson PA. The complete amino acid sequence of beta 2-microglobulin. Biochemistry. 1973 Nov 20;12(24):4811-22. PMID:4586824
- ↑ Haag-Weber M, Mai B, Horl WH. Isolation of a granulocyte inhibitory protein from uraemic patients with homology of beta 2-microglobulin. Nephrol Dial Transplant. 1994;9(4):382-8. PMID:8084451
- ↑ Trinh CH, Smith DP, Kalverda AP, Phillips SE, Radford SE. Crystal structure of monomeric human beta-2-microglobulin reveals clues to its amyloidogenic properties. Proc Natl Acad Sci U S A. 2002 Jul 23;99(15):9771-6. Epub 2002 Jul 15. PMID:12119416 doi:10.1073/pnas.152337399
- ↑ Stewart-Jones GB, McMichael AJ, Bell JI, Stuart DI, Jones EY. A structural basis for immunodominant human T cell receptor recognition. Nat Immunol. 2003 Jul;4(7):657-63. Epub 2003 Jun 8. PMID:12796775 doi:10.1038/ni942
- ↑ Kihara M, Chatani E, Iwata K, Yamamoto K, Matsuura T, Nakagawa A, Naiki H, Goto Y. Conformation of amyloid fibrils of beta2-microglobulin probed by tryptophan mutagenesis. J Biol Chem. 2006 Oct 13;281(41):31061-9. Epub 2006 Aug 10. PMID:16901902 doi:10.1074/jbc.M605358200
- ↑ Eakin CM, Berman AJ, Miranker AD. A native to amyloidogenic transition regulated by a backbone trigger. Nat Struct Mol Biol. 2006 Mar;13(3):202-8. Epub 2006 Feb 19. PMID:16491088 doi:10.1038/nsmb1068
- ↑ Iwata K, Matsuura T, Sakurai K, Nakagawa A, Goto Y. High-resolution crystal structure of beta2-microglobulin formed at pH 7.0. J Biochem. 2007 Sep;142(3):413-9. Epub 2007 Jul 23. PMID:17646174 doi:10.1093/jb/mvm148
- ↑ Ricagno S, Colombo M, de Rosa M, Sangiovanni E, Giorgetti S, Raimondi S, Bellotti V, Bolognesi M. DE loop mutations affect beta2-microglobulin stability and amyloid aggregation. Biochem Biophys Res Commun. 2008 Dec 5;377(1):146-50. Epub 2008 Oct 1. PMID:18835253 doi:S0006-291X(08)01866-4
- ↑ Esposito G, Ricagno S, Corazza A, Rennella E, Gumral D, Mimmi MC, Betto E, Pucillo CE, Fogolari F, Viglino P, Raimondi S, Giorgetti S, Bolognesi B, Merlini G, Stoppini M, Bolognesi M, Bellotti V. The controlling roles of Trp60 and Trp95 in beta2-microglobulin function, folding and amyloid aggregation properties. J Mol Biol. 2008 May 9;378(4):887-97. Epub 2008 Mar 8. PMID:18395224 doi:10.1016/j.jmb.2008.03.002
- ↑ Ricagno S, Raimondi S, Giorgetti S, Bellotti V, Bolognesi M. Human beta-2 microglobulin W60V mutant structure: Implications for stability and amyloid aggregation. Biochem Biophys Res Commun. 2009 Mar 13;380(3):543-7. Epub 2009 Jan 25. PMID:19284997 doi:10.1016/j.bbrc.2009.01.116
- ↑ Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE. ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem. 1999 Jun 11;274(24):17209-18. PMID:10358079
- ↑ Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z, Ali-Seyed M, Lee DF, Bartholomeusz G, Ou-Yang F, Giri DK, Hung MC. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell. 2004 Sep;6(3):251-61. PMID:15380516 doi:10.1016/j.ccr.2004.07.012
- ↑ Anido J, Scaltriti M, Bech Serra JJ, Santiago Josefat B, Todo FR, Baselga J, Arribas J. Biosynthesis of tumorigenic HER2 C-terminal fragments by alternative initiation of translation. EMBO J. 2006 Jul 12;25(13):3234-44. Epub 2006 Jun 22. PMID:16794579 doi:10.1038/sj.emboj.7601191
- ↑ Hawthorne VS, Huang WC, Neal CL, Tseng LM, Hung MC, Yu D. ErbB2-mediated Src and signal transducer and activator of transcription 3 activation leads to transcriptional up-regulation of p21Cip1 and chemoresistance in breast cancer cells. Mol Cancer Res. 2009 Apr;7(4):592-600. doi: 10.1158/1541-7786.MCR-08-0316. PMID:19372587 doi:10.1158/1541-7786.MCR-08-0316
- ↑ Zaoui K, Benseddik K, Daou P, Salaun D, Badache A. ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18517-22. doi:, 10.1073/pnas.1000975107. Epub 2010 Oct 11. PMID:20937854 doi:10.1073/pnas.1000975107
- ↑ Li LY, Chen H, Hsieh YH, Wang YN, Chu HJ, Chen YH, Chen HY, Chien PJ, Ma HT, Tsai HC, Lai CC, Sher YP, Lien HC, Tsai CH, Hung MC. Nuclear ErbB2 enhances translation and cell growth by activating transcription of ribosomal RNA genes. Cancer Res. 2011 Jun 15;71(12):4269-79. doi: 10.1158/0008-5472.CAN-10-3504. Epub , 2011 May 9. PMID:21555369 doi:10.1158/0008-5472.CAN-10-3504
- ↑ Olayioye MA, Beuvink I, Horsch K, Daly JM, Hynes NE. ErbB receptor-induced activation of stat transcription factors is mediated by Src tyrosine kinases. J Biol Chem. 1999 Jun 11;274(24):17209-18. PMID:10358079
- ↑ Wang SC, Lien HC, Xia W, Chen IF, Lo HW, Wang Z, Ali-Seyed M, Lee DF, Bartholomeusz G, Ou-Yang F, Giri DK, Hung MC. Binding at and transactivation of the COX-2 promoter by nuclear tyrosine kinase receptor ErbB-2. Cancer Cell. 2004 Sep;6(3):251-61. PMID:15380516 doi:10.1016/j.ccr.2004.07.012
- ↑ Anido J, Scaltriti M, Bech Serra JJ, Santiago Josefat B, Todo FR, Baselga J, Arribas J. Biosynthesis of tumorigenic HER2 C-terminal fragments by alternative initiation of translation. EMBO J. 2006 Jul 12;25(13):3234-44. Epub 2006 Jun 22. PMID:16794579 doi:10.1038/sj.emboj.7601191
- ↑ Hawthorne VS, Huang WC, Neal CL, Tseng LM, Hung MC, Yu D. ErbB2-mediated Src and signal transducer and activator of transcription 3 activation leads to transcriptional up-regulation of p21Cip1 and chemoresistance in breast cancer cells. Mol Cancer Res. 2009 Apr;7(4):592-600. doi: 10.1158/1541-7786.MCR-08-0316. PMID:19372587 doi:10.1158/1541-7786.MCR-08-0316
- ↑ Zaoui K, Benseddik K, Daou P, Salaun D, Badache A. ErbB2 receptor controls microtubule capture by recruiting ACF7 to the plasma membrane of migrating cells. Proc Natl Acad Sci U S A. 2010 Oct 26;107(43):18517-22. doi:, 10.1073/pnas.1000975107. Epub 2010 Oct 11. PMID:20937854 doi:10.1073/pnas.1000975107
- ↑ Li LY, Chen H, Hsieh YH, Wang YN, Chu HJ, Chen YH, Chen HY, Chien PJ, Ma HT, Tsai HC, Lai CC, Sher YP, Lien HC, Tsai CH, Hung MC. Nuclear ErbB2 enhances translation and cell growth by activating transcription of ribosomal RNA genes. Cancer Res. 2011 Jun 15;71(12):4269-79. doi: 10.1158/0008-5472.CAN-10-3504. Epub , 2011 May 9. PMID:21555369 doi:10.1158/0008-5472.CAN-10-3504