2zlc
From Proteopedia
(Difference between revisions)
m (Protected "2zlc" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | [[ | + | ==2-Substituted-16-ene-22-thia-1alpha,25-dihydroxy-26,27-dimethyl-19-norvitamin D3 analogs: Synthesis, biological evaluation and crystal structure== |
+ | <StructureSection load='2zlc' size='340' side='right' caption='[[2zlc]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[2zlc]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2ZLC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ZLC FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=VDX:5-{2-[1-(5-HYDROXY-1,5-DIMETHYL-HEXYL)-7A-METHYL-OCTAHYDRO-INDEN-4-YLIDENE]-ETHYLIDENE}-4-METHYLENE-CYCLOHEXANE-1,3-DIOL'>VDX</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2zl9|2zl9]], [[2zla|2zla]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Vdr, Nr1i1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Rattus norvegicus])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2zlc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2zlc OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2zlc RCSB], [http://www.ebi.ac.uk/pdbsum/2zlc PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/zl/2zlc_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Recently, we have found that 16-ene-22-thia-26,27-dimethyl-19-norvitamin D(3) analogs 1a (n=2, 3) are 20 times more active than the natural hormone 1alpha,25-dihydroxyvitamin D(3) in terms of transcriptional activity. To further investigate the effects of the A-ring modification of 1a, b on the biological activity profile, novel 22-thia-19-norvitamin D analogs 2-11 bearing a hydroxyethoxy-, hydroxyethylidene- or methyl group at C-2 in combination with 20S- and 20R-isomers were prepared and tested for their in vitro biological activities. All of the synthesized analogs showed 0.5-140% of the activity of the natural hormone in binding to the vitamin D receptor (VDR). When compared with the transcriptional activity of C-2 or C-20 isomeric pairs of the 22-thia analogs, the 20S-isomers 2-11a were more potent than the 20R-isomers 2, 3, 8-11b, and the 2beta-hydroxyethoxy, 2E-hydroxyethylidene, and 2alpha-methyl-2beta-hydroxy-22-thia isomers showed higher potency than their corresponding counterparts. In particular, 3a exhibited an extremely higher level of potency (210-fold) than the natural hormone. To elucidate the action mode of superagonist 3a at the molecular level, we determined the crystal structures of the rat VDR-ligand-binding domain complexed with 3a or 3b in the presence of peptide containing a nuclear box motif (LxxLL) at 1.9-2.0A resolution. The crystal structures demonstrated that the 1alpha-OH, 3beta-OH, and 25-OH groups of the natural hormone and 3a were anchored by the same amino acid residues in the ligand-binding pocket, and the terminal OH moiety of the substituent at C-2 formed hydrogen bonds with Arg270 and a water molecule to create a tight water molecule network. Moreover, the methyl groups at C-26a and C-27a make additional contact with hydrophobic residues such as Leu223, Ala227, Val230, and Ala299. These hydrophilic and hydrophobic interactions in 3a may underlie the induction of superagonistic activity. | ||
- | + | 2-Substituted-16-ene-22-thia-1alpha,25-dihydroxy-26,27-dimethyl-19-norvita min D3 analogs: Synthesis, biological evaluation, and crystal structure.,Shimizu M, Miyamoto Y, Takaku H, Matsuo M, Nakabayashi M, Masuno H, Udagawa N, DeLuca HF, Ikura T, Ito N Bioorg Med Chem. 2008 Jul 15;16(14):6949-64. Epub 2008 May 27. PMID:18539034<ref>PMID:18539034</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
+ | *[[Sandbox vdr|Sandbox vdr]] | ||
*[[Vitamin D receptor|Vitamin D receptor]] | *[[Vitamin D receptor|Vitamin D receptor]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Rattus norvegicus]] | [[Category: Rattus norvegicus]] | ||
[[Category: Ikura, T.]] | [[Category: Ikura, T.]] |
Revision as of 06:27, 29 September 2014
2-Substituted-16-ene-22-thia-1alpha,25-dihydroxy-26,27-dimethyl-19-norvitamin D3 analogs: Synthesis, biological evaluation and crystal structure
|