1mwc

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
[[Image:1mwc.png|left|200px]]
+
==WILD TYPE MYOGLOBIN WITH CO==
 +
<StructureSection load='1mwc' size='340' side='right' caption='[[1mwc]], [[Resolution|resolution]] 1.70&Aring;' scene=''>
 +
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[1mwc]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MWC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1MWC FirstGlance]. <br>
 +
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CMO:CARBON+MONOXIDE'>CMO</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene><br>
 +
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1mwc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1mwc OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1mwc RCSB], [http://www.ebi.ac.uk/pdbsum/1mwc PDBsum]</span></td></tr>
 +
<table>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/mw/1mwc_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
The isopropyl side chain of valine68 in myoglobin has been replaced by the acetamide side chain of asparagine in an attempt to engineer higher oxygen affinity. The asparagine replacement introduces a second hydrogen bond donor group into the distal heme pocket which could further stabilize bound oxygen. The Val68 to Asn substitution leads to approximately 3-fold increases in oxygen affinity and 4-6-fold decreases in CO affinity. As a result, the M-value (KCO/KO2) is lowered 15-20-fold to a value close to unity. An even larger enhancement of O2 affinity is seen when asparagine68 is inserted into H64L sperm whale myoglobin which lacks a distal histidine. The overall rate constants for oxygen and carbon monoxide binding to the single V68N myoglobin mutants are uniformly lower than those for the wild-type protein. In contrast, the overall rate constant for NO association is unchanged. Analyses of time courses monitoring the geminate recombination of ligands following nanosecond and picosecond flash photolysis of MbNO and MbO2 indicate that the barrier to ligand binding from within the heme pocket has been raised with little effect on the barrier to diffusion of the ligand into the pocket from the solvent. The crystal structures of the aquomet, deoxy, oxy, and carbon monoxy forms of the V68N mutant have been determined to resolutions ranging from 1.75 to 2.2 A at 150 K. The overall structures are very similar to those of the wild-type protein with the principal alterations taking place within and around the distal heme pocket. In all four structures the asparagine68 side chain lies almost parallel to the plane of the heme with its amide group directed toward the back of the distal heme pocket. The coordinated water molecule in the aquomet form and the bound oxygen in the oxy form can form hydrogen-bonding interactions with both the Asn68 amide group and the imidazole side chain of His64. Surprisingly, in the carbon monoxy form of the V68N mutant, the histidine64 side chain has swung completely out the distal pocket, its place being taken by two ordered water molecules. Overall, these functional and structural results show that the asparagine68 side chain (i) forms a strong hydrogen bond with bound oxygen through its -NH2 group but (ii) sterically hinders the approach of ligands to the iron from within the distal heme pocket.
-
{{STRUCTURE_1mwc| PDB=1mwc | SCENE= }}
+
Stabilizing bound O2 in myoglobin by valine68 (E11) to asparagine substitution.,Krzywda S, Murshudov GN, Brzozowski AM, Jaskolski M, Scott EE, Klizas SA, Gibson QH, Olson JS, Wilkinson AJ Biochemistry. 1998 Nov 10;37(45):15896-907. PMID:9843395<ref>PMID:9843395</ref>
-
===WILD TYPE MYOGLOBIN WITH CO===
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
 
+
</div>
-
{{ABSTRACT_PUBMED_9843395}}
+
-
 
+
-
==About this Structure==
+
-
[[1mwc]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Sus_scrofa Sus scrofa]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MWC OCA].
+
==See Also==
==See Also==
*[[Myoglobin|Myoglobin]]
*[[Myoglobin|Myoglobin]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:009843395</ref><references group="xtra"/>
+
__TOC__
 +
</StructureSection>
[[Category: Sus scrofa]]
[[Category: Sus scrofa]]
[[Category: Brzozowski, A M.]]
[[Category: Brzozowski, A M.]]

Revision as of 13:34, 28 September 2014

WILD TYPE MYOGLOBIN WITH CO

1mwc, resolution 1.70Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox