1iel
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==Crystal Structure of AmpC beta-lactamase from E. coli in Complex with Ceftazidime== |
+ | <StructureSection load='1iel' size='340' side='right' caption='[[1iel]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1iel]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1IEL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1IEL FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CAZ:ACYLATED+CEFTAZIDIME'>CAZ</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1fsy|1fsy]], [[1fsw|1fsw]], [[2bls|2bls]], [[3bls|3bls]], [[1ga9|1ga9]], [[1c3b|1c3b]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-lactamase Beta-lactamase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.2.6 3.5.2.6] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1iel FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1iel OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1iel RCSB], [http://www.ebi.ac.uk/pdbsum/1iel PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ie/1iel_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Third-generation cephalosporins are widely used beta-lactam antibiotics that resist hydrolysis by beta-lactamases. Recently, mutant beta-lactamases that rapidly inactivate these drugs have emerged. To investigate why third-generation cephalosporins are relatively stable to wild-type class C beta-lactamases and how mutant enzymes might overcome this, the structures of the class C beta-lactamase AmpC in complex with the third-generation cephalosporin ceftazidime and with a transition-state analogue of ceftazidime were determined by X-ray crystallography to 2.0 and 2.3 A resolution, respectively. Comparison of the acyl-enzyme structures of ceftazidime and loracarbef, a beta-lactam substrate, reveals that the conformation of ceftazidime in the active site differs from that of substrates. Comparison of the structures of the acyl-enzyme intermediate and the transition-state analogue suggests that ceftazidime blocks formation of the tetrahedral transition state, explaining why it is an inhibitor of AmpC. Ceftazidime cannot adopt a conformation competent for catalysis due to steric clashes that would occur with conserved residues Val211 and Tyr221. The X-ray crystal structure of the mutant beta-lactamase GC1, which has improved activity against third-generation cephalosporins, suggests that a tandem tripeptide insertion in the Omega loop, which contains Val211, has caused a shift of this residue and also of Tyr221 that would allow ceftazidime and other third-generation cephalosporins to adopt a more catalytically competent conformation. These structural differences may explain the extended spectrum activity of GC1 against this class of cephalosporins. In addition, the complexed structure of the transition-state analogue inhibitor (K(i) 20 nM) with AmpC reveals potential opportunities for further inhibitor design. | ||
- | + | Structures of ceftazidime and its transition-state analogue in complex with AmpC beta-lactamase: implications for resistance mutations and inhibitor design.,Powers RA, Caselli E, Focia PJ, Prati F, Shoichet BK Biochemistry. 2001 Aug 7;40(31):9207-14. PMID:11478888<ref>PMID:11478888</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
*[[Beta-lactamase|Beta-lactamase]] | *[[Beta-lactamase|Beta-lactamase]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Beta-lactamase]] | [[Category: Beta-lactamase]] | ||
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] |
Revision as of 11:54, 28 September 2014
Crystal Structure of AmpC beta-lactamase from E. coli in Complex with Ceftazidime
|