1mi3
From Proteopedia
Line 1: | Line 1: | ||
- | [[Image:1mi3.gif|left|200px]] | + | [[Image:1mi3.gif|left|200px]] |
- | + | ||
- | '''1.8 Angstrom structure of xylose reductase from Candida tenuis in complex with NADH''' | + | {{Structure |
+ | |PDB= 1mi3 |SIZE=350|CAPTION= <scene name='initialview01'>1mi3</scene>, resolution 1.80Å | ||
+ | |SITE= | ||
+ | |LIGAND= <scene name='pdbligand=NAD:NICOTINAMIDE-ADENINE-DINUCLEOTIDE'>NAD</scene> | ||
+ | |ACTIVITY= [http://en.wikipedia.org/wiki/Aldehyde_reductase Aldehyde reductase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.1.21 1.1.1.21] | ||
+ | |GENE= xylR ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=45596 Candida tenuis]) | ||
+ | }} | ||
+ | |||
+ | '''1.8 Angstrom structure of xylose reductase from Candida tenuis in complex with NADH''' | ||
+ | |||
==Overview== | ==Overview== | ||
Line 7: | Line 16: | ||
==About this Structure== | ==About this Structure== | ||
- | 1MI3 is a [ | + | 1MI3 is a [[Single protein]] structure of sequence from [http://en.wikipedia.org/wiki/Candida_tenuis Candida tenuis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1MI3 OCA]. |
==Reference== | ==Reference== | ||
- | Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases., Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK, Biochem J. 2003 Jul 15;373(Pt 2):319-26. PMID:[http:// | + | Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases., Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK, Biochem J. 2003 Jul 15;373(Pt 2):319-26. PMID:[http://www.ncbi.nlm.nih.gov/pubmed/12733986 12733986] |
[[Category: Aldehyde reductase]] | [[Category: Aldehyde reductase]] | ||
[[Category: Candida tenuis]] | [[Category: Candida tenuis]] | ||
Line 23: | Line 32: | ||
[[Category: dimer]] | [[Category: dimer]] | ||
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 12:43:47 2008'' |
Revision as of 10:43, 20 March 2008
| |||||||
, resolution 1.80Å | |||||||
---|---|---|---|---|---|---|---|
Ligands: | |||||||
Gene: | xylR (Candida tenuis) | ||||||
Activity: | Aldehyde reductase, with EC number 1.1.1.21 | ||||||
Coordinates: | save as pdb, mmCIF, xml |
1.8 Angstrom structure of xylose reductase from Candida tenuis in complex with NADH
Overview
The co-ordinates reported have been submitted to the Protein Data Bank under accession number 1MI3. Xylose reductase (XR; AKR2B5) is an unusual member of aldo-keto reductase superfamily, because it is one of the few able to efficiently utilize both NADPH and NADH as co-substrates in converting xylose into xylitol. In order to better understand the basis for this dual specificity, we have determined the crystal structure of XR from the yeast Candida tenuis in complex with NAD(+) to 1.80 A resolution (where 1 A=0.1 nm) with a crystallographic R -factor of 18.3%. A comparison of the NAD(+)- and the previously determined NADP(+)-bound forms of XR reveals that XR has the ability to change the conformation of two loops. To accommodate both the presence and absence of the 2'-phosphate, the enzyme is able to adopt different conformations for several different side chains on these loops, including Asn(276), which makes alternative hydrogen-bonding interactions with the adenosine ribose. Also critical is the presence of Glu(227) on a short rigid helix, which makes hydrogen bonds to both the 2'- and 3'-hydroxy groups of the adenosine ribose. In addition to changes in hydrogen-bonding of the adenosine, the ribose unmistakably adopts a 3'- endo conformation rather than the 2'- endo conformation seen in the NADP(+)-bound form. These results underscore the importance of tight adenosine binding for efficient use of either NADH or NADPH as a co-substrate in aldo-keto reductases. The dual specificity found in XR is also an important consideration in designing a high-flux xylose metabolic pathway, which may be improved with an enzyme specific for NADH.
About this Structure
1MI3 is a Single protein structure of sequence from Candida tenuis. Full crystallographic information is available from OCA.
Reference
Structure of xylose reductase bound to NAD+ and the basis for single and dual co-substrate specificity in family 2 aldo-keto reductases., Kavanagh KL, Klimacek M, Nidetzky B, Wilson DK, Biochem J. 2003 Jul 15;373(Pt 2):319-26. PMID:12733986
Page seeded by OCA on Thu Mar 20 12:43:47 2008