1jse
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==FULL-MATRIX LEAST-SQUARES REFINEMENT OF TURKEY LYSOZYME== |
+ | <StructureSection load='1jse' size='340' side='right' caption='[[1jse]], [[Resolution|resolution]] 1.12Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1jse]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Meleagris_gallopavo Meleagris gallopavo]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1JSE OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1JSE FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=POL:N-PROPANOL'>POL</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1jse FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1jse OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1jse RCSB], [http://www.ebi.ac.uk/pdbsum/1jse PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/js/1jse_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Crystal structures of turkey egg lysozyme (TEL) and human lysozyme (HL) were refined by full-matrix least-squares method using anisotropic temperature factors. The refinement converged at the conventional R-values of 0.104 (TEL) and 0.115 (HL) for reflections with Fo > 0 to the resolution of 1.12 A and 1.15 A, respectively. The estimated r.m.s. coordinate errors for protein atoms were 0.031 A (TEL) and 0.034 A (HL). The introduction of anisotropic temperature factors markedly reduced the R-value but did not significantly affect the main chain coordinates. The degree of anisotropy of atomic thermal motion has strong positive correlation with the square of distance from the molecular centroid. The ratio of the radial component of thermal ellipsoid to the r.m.s. magnitude of three principal components has negative correlation with the distance from the molecular centroid, suggesting the domination of libration rather than breathing motion. The TLS model was applied to elucidate the characteristics of the rigid-body motion. The TLS tensors were determined by the least-squares fit to observed temperature factors. The profile of the magnitude of reproduced temperature factors by the TLS method well fitted to that of observed B(eqv). However, considerable disagreement was observed in the shape and orientation of thermal ellipsoid for atoms with large temperature factors, indicating the large contribution of local motion. The upper estimate of the external motion, 67% (TEL) and 61% (HL) of B(eqv), was deduced from the plot of the magnitude of TLS tensors determined for main chain atoms which were grouped into shells according to the distance from the center of libration. In the external motion, the translational portion is predominant and the contribution of libration and screw motion is relatively small. The internal motion, estimated by subtracting the upper estimate of the external motion from the observed temperature factor, is very similar between TEL and HL in spite of the difference in 54 of 130 amino acid residues and in crystal packing, being suggested to reflect the intrinsic internal motion of chicken-type lysozymes. | ||
- | + | Full-matrix least-squares refinement of lysozymes and analysis of anisotropic thermal motion.,Harata K, Abe Y, Muraki M Proteins. 1998 Feb 15;30(3):232-43. PMID:9517539<ref>PMID:9517539</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
- | *[[ | + | *[[Lysozyme 3D structures|Lysozyme 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Lysozyme]] | [[Category: Lysozyme]] | ||
[[Category: Meleagris gallopavo]] | [[Category: Meleagris gallopavo]] |
Revision as of 12:58, 28 September 2014
FULL-MATRIX LEAST-SQUARES REFINEMENT OF TURKEY LYSOZYME
|
Categories: Lysozyme | Meleagris gallopavo | Abe, Y. | Harata, K. | Muraki, M. | Enzyme | Hydrolase | O-glycosyl | Turkey lysozyme