1b6i
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==T4 LYSOZYME MUTANT WITH CYS 54 REPLACED BY THR, CYS 97 REPLACED BY ALA, THR 21 REPLACED BY CYS AND LYS 124 REPLACED BY CYS (C54T,C97A,T21C,K124C)== |
+ | <StructureSection load='1b6i' size='340' side='right' caption='[[1b6i]], [[Resolution|resolution]] 1.90Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1b6i]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Enterobacteria_phage_t4 Enterobacteria phage t4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1B6I OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1B6I FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HED:2-HYDROXYETHYL+DISULFIDE'>HED</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1b6i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1b6i OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1b6i RCSB], [http://www.ebi.ac.uk/pdbsum/1b6i PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/b6/1b6i_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Recent advances in single molecule manipulation methods offer a novel approach to investigating the protein folding problem. These studies usually are done on molecules that are naturally organized as linear arrays of globular domains. To extend these techniques to study proteins that normally exist as monomers, we have developed a method of synthesizing polymers of protein molecules in the solid state. By introducing cysteines at locations where bacteriophage T4 lysozyme molecules contact each other in a crystal and taking advantage of the alignment provided by the lattice, we have obtained polymers of defined polarity up to 25 molecules long that retain enzymatic activity. These polymers then were manipulated mechanically by using a modified scanning force microscope to characterize the force-induced reversible unfolding of the individual lysozyme molecules. This approach should be general and adaptable to many other proteins with known crystal structures. For T4 lysozyme, the force required to unfold the monomers was 64 +/- 16 pN at the pulling speed used. Refolding occurred within 1 sec of relaxation with an efficiency close to 100%. Analysis of the force versus extension curves suggests that the mechanical unfolding transition follows a two-state model. The unfolding forces determined in 1 M guanidine hydrochloride indicate that in these conditions the activation barrier for unfolding is reduced by 2 kcal/mol. | ||
- | + | Solid-state synthesis and mechanical unfolding of polymers of T4 lysozyme.,Yang G, Cecconi C, Baase WA, Vetter IR, Breyer WA, Haack JA, Matthews BW, Dahlquist FW, Bustamante C Proc Natl Acad Sci U S A. 2000 Jan 4;97(1):139-44. PMID:10618384<ref>PMID:10618384</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
- | *[[ | + | *[[Lysozyme 3D structures|Lysozyme 3D structures]] |
- | + | == References == | |
- | == | + | <references/> |
- | < | + | __TOC__ |
+ | </StructureSection> | ||
[[Category: Enterobacteria phage t4]] | [[Category: Enterobacteria phage t4]] | ||
[[Category: Lysozyme]] | [[Category: Lysozyme]] |
Revision as of 03:06, 7 August 2014
T4 LYSOZYME MUTANT WITH CYS 54 REPLACED BY THR, CYS 97 REPLACED BY ALA, THR 21 REPLACED BY CYS AND LYS 124 REPLACED BY CYS (C54T,C97A,T21C,K124C)
|