1gfy
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
| - | [[ | + | ==RESIDUE 259 IS A KEY DETERMINANT OF SUBSTRATE SPECIFICITY OF PROTEIN-TYROSINE PHOSPHATASE 1B AND ALPHA== |
| + | <StructureSection load='1gfy' size='340' side='right' caption='[[1gfy]], [[Resolution|resolution]] 2.13Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[1gfy]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1GFY OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1GFY FirstGlance]. <br> | ||
| + | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=COL:2-(OXALYL-AMINO)-4,7-DIHYDRO-5H-THIENO[2,3-C]THIOPYRAN-3-CARBOXYLIC+ACID'>COL</scene><br> | ||
| + | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1ecv|1ecv]], [[1c83|1c83]], [[1c84|1c84]], [[1c85|1c85]], [[1c86|1c86]], [[1c87|1c87]], [[1c88|1c88]]</td></tr> | ||
| + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Protein-tyrosine-phosphatase Protein-tyrosine-phosphatase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.1.3.48 3.1.3.48] </span></td></tr> | ||
| + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1gfy FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1gfy OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1gfy RCSB], [http://www.ebi.ac.uk/pdbsum/1gfy PDBsum]</span></td></tr> | ||
| + | <table> | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/gf/1gfy_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | The aim of this study was to define the structural elements that determine the differences in substrate recognition capacity of two protein-tyrosine phosphatases (PTPs), PTP1B and PTPalpha, both suggested to be negative regulators of insulin signaling. Since the Ac-DADE(pY)L-NH(2) peptide is well recognized by PTP1B, but less efficiently by PTPalpha, it was chosen as a tool for these analyses. Calpha regiovariation analyses and primary sequence alignments indicate that residues 47, 48, 258, and 259 (PTP1B numbering) define a selectivity-determining region. By analyzing a set of DADE(pY)L analogs with a series of PTP mutants in which these four residues were exchanged between PTP1B and PTPalpha, either in combination or alone, we here demonstrate that the key selectivity-determining residue is 259. In PTPalpha, this residue is a glutamine causing steric hindrance and in PTP1B a glycine allowing broad substrate recognition. Significantly, replacing Gln(259) with a glycine almost turns PTPalpha into a PTP1B-like enzyme. By using a novel set of PTP inhibitors and x-ray crystallography, we further provide evidence that Gln(259) in PTPalpha plays a dual role leading to restricted substrate recognition (directly via steric hindrance) and reduced catalytic activity (indirectly via Gln(262)). Both effects may indicate that PTPalpha regulates highly selective signal transduction processes. | ||
| - | + | Residue 259 is a key determinant of substrate specificity of protein-tyrosine phosphatases 1B and alpha.,Peters GH, Iversen LF, Branner S, Andersen HS, Mortensen SB, Olsen OH, Moller KB, Moller NP J Biol Chem. 2000 Jun 16;275(24):18201-9. PMID:10748206<ref>PMID:10748206</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | + | ||
| - | + | ||
| - | + | ||
| - | + | ||
==See Also== | ==See Also== | ||
*[[Tyrosine phosphatase|Tyrosine phosphatase]] | *[[Tyrosine phosphatase|Tyrosine phosphatase]] | ||
| - | + | == References == | |
| - | == | + | <references/> |
| - | < | + | __TOC__ |
| + | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Protein-tyrosine-phosphatase]] | [[Category: Protein-tyrosine-phosphatase]] | ||
[[Category: Iversen, L F.]] | [[Category: Iversen, L F.]] | ||
[[Category: Hydrolase]] | [[Category: Hydrolase]] | ||
Revision as of 14:17, 28 September 2014
RESIDUE 259 IS A KEY DETERMINANT OF SUBSTRATE SPECIFICITY OF PROTEIN-TYROSINE PHOSPHATASE 1B AND ALPHA
| |||||||||||

