Tutorial:Basic Chemistry Topics

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 15: Line 15:
-
=='''Objectives'''==
+
='''Objectives'''=
By the end of this tutorial you should be able to:
By the end of this tutorial you should be able to:
Line 30: Line 30:
-
=='''Types of Bonds'''==
+
='''Types of Bonds'''=
There are 3 common types of bonds. A hydrogen bond, covalent bonds, or an ionic bond. The strongest bond is a covalent bond followed by the ionic bond, leaving the weakest bond to be the hydrogen bond. Covalent bonds, the strongest type of bond, they involves the sharing of electrons between two molecules. An example of a covalent bond is hydrochloric acid or HCl. The electrons are being shared between the chlorine atom (Cl) and the hydrogen atom (H). An ionic bond is an attraction between two molecules of opposite charge. The opposite charges I am referring to are a positive (+) and a negative charge (-). A positively charged atom is referred to as a cation, and a negatively charged atom is referred to as an anion. Hydrogen Bonds, the weakest of bonds, are attractive interactions (dipole-dipole) between an electronegative atom and hydrogen. Electronegative atoms are atoms that have high electron density. They are strong atoms that pull electrons towards then from weaker/low electron density atoms, such as hydrogen. When the electronegative atom pulls the electrons it leaves the other atom with a slight positive charge. The most common example of hydrogen bonding is water. The water molecule chemical formula is H2O. The highly electronegative oxygen pulls the hydrogen closer by attracting hydrogen’s electrons allowing the formation of a water droplet. The electronegative atoms allow for the droplet to be held together instead of spreading. The hydrogen bonds in this picture are displayed as yellow dashed lines. The hydrogen bonds in this molecule are important to the secondary structures providing the stability of the atoms orientation.
There are 3 common types of bonds. A hydrogen bond, covalent bonds, or an ionic bond. The strongest bond is a covalent bond followed by the ionic bond, leaving the weakest bond to be the hydrogen bond. Covalent bonds, the strongest type of bond, they involves the sharing of electrons between two molecules. An example of a covalent bond is hydrochloric acid or HCl. The electrons are being shared between the chlorine atom (Cl) and the hydrogen atom (H). An ionic bond is an attraction between two molecules of opposite charge. The opposite charges I am referring to are a positive (+) and a negative charge (-). A positively charged atom is referred to as a cation, and a negatively charged atom is referred to as an anion. Hydrogen Bonds, the weakest of bonds, are attractive interactions (dipole-dipole) between an electronegative atom and hydrogen. Electronegative atoms are atoms that have high electron density. They are strong atoms that pull electrons towards then from weaker/low electron density atoms, such as hydrogen. When the electronegative atom pulls the electrons it leaves the other atom with a slight positive charge. The most common example of hydrogen bonding is water. The water molecule chemical formula is H2O. The highly electronegative oxygen pulls the hydrogen closer by attracting hydrogen’s electrons allowing the formation of a water droplet. The electronegative atoms allow for the droplet to be held together instead of spreading. The hydrogen bonds in this picture are displayed as yellow dashed lines. The hydrogen bonds in this molecule are important to the secondary structures providing the stability of the atoms orientation.
-
=='''Secondary Structures'''==
+
='''Secondary Structures'''=
Secondary structures are alpha helices and beta sheets. They help contribute to the stability of the molecule. The alpha helices are represented with pink arrows and the beta strands are represented with yellow arrows. This molecule has approximately four alpha helices and two beta strands, when presented as a monomer. Since this structure is represented as a dimer you actually have eight alpha helices and four beta sheets. The concept of a dimer is explained in the "Ligands" section later on in the tutorial. Alpha helices rotate in a clockwise manner and are also oriented in a parallel formation. The parallel alpha helices are held together by hydrogen bond, which we discussed earlier. Beta sheets are often anti-parallel. The structure of the alpha and beta sheets in Tuberculosis/CoA/Tobramycin structure represents the GNAT fold. The folding of a protein is what gives the function. When you have a change in the folding you have a change in the function. The GNAT fold described in the study has a function of acetylation. Acetylation is the addition of an acyl group. The chemical formula of an acetyl group is COCH3. It is important to note that the discovery of the GNAT fold lead to the understanding of the major function.
Secondary structures are alpha helices and beta sheets. They help contribute to the stability of the molecule. The alpha helices are represented with pink arrows and the beta strands are represented with yellow arrows. This molecule has approximately four alpha helices and two beta strands, when presented as a monomer. Since this structure is represented as a dimer you actually have eight alpha helices and four beta sheets. The concept of a dimer is explained in the "Ligands" section later on in the tutorial. Alpha helices rotate in a clockwise manner and are also oriented in a parallel formation. The parallel alpha helices are held together by hydrogen bond, which we discussed earlier. Beta sheets are often anti-parallel. The structure of the alpha and beta sheets in Tuberculosis/CoA/Tobramycin structure represents the GNAT fold. The folding of a protein is what gives the function. When you have a change in the folding you have a change in the function. The GNAT fold described in the study has a function of acetylation. Acetylation is the addition of an acyl group. The chemical formula of an acetyl group is COCH3. It is important to note that the discovery of the GNAT fold lead to the understanding of the major function.
-
=='''Active Site'''==
+
='''Active Site'''=
The active site of a molecule can be described as a pocket where an interaction between substrates causes a physiological effect by causing a change in conformation. The conformation is referring to the orientation of the molecules involved in the structure. The conformation change can inhibit or activate the physiological effect. The active site is where the ligand is going to bind. (Ligands are discussed in detail later on in the “Ligands” section) The active site can either be inhibited or activated by ligands. Referring back to our article, the active site is where the substrate, in this case tobramycin, binds to CoA and the mycobacterium to cause an antibacterial effect. It the study described this is where the acetylation of the tobramycin should be occurring. The acetylation of tobramycin would cause the tobramycin to be inactive, hence inhibit the active site.
The active site of a molecule can be described as a pocket where an interaction between substrates causes a physiological effect by causing a change in conformation. The conformation is referring to the orientation of the molecules involved in the structure. The conformation change can inhibit or activate the physiological effect. The active site is where the ligand is going to bind. (Ligands are discussed in detail later on in the “Ligands” section) The active site can either be inhibited or activated by ligands. Referring back to our article, the active site is where the substrate, in this case tobramycin, binds to CoA and the mycobacterium to cause an antibacterial effect. It the study described this is where the acetylation of the tobramycin should be occurring. The acetylation of tobramycin would cause the tobramycin to be inactive, hence inhibit the active site.

Revision as of 20:52, 28 October 2012

Structure of HMG-CoA reductase (PDB entry 1dq8)

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Alyssa Graham

Personal tools