1eha
From Proteopedia
(Difference between revisions)
m (Protected "1eha" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | [[ | + | ==CRYSTAL STRUCTURE OF GLYCOSYLTREHALOSE TREHALOHYDROLASE FROM SULFOLOBUS SOLFATARICUS== |
+ | <StructureSection load='1eha' size='340' side='right' caption='[[1eha]], [[Resolution|resolution]] 3.00Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1eha]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Sulfolobus_solfataricus Sulfolobus solfataricus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1EHA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1EHA FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1eh9|1eh9]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Alpha-amylase Alpha-amylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.1 3.2.1.1] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1eha FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1eha OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1eha RCSB], [http://www.ebi.ac.uk/pdbsum/1eha PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/eh/1eha_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The crystal structure of glycosyltrehalose trehalohydrolase from the hyperthermophilic archaeum Sulfolobus solfataricus KM1 has been solved by multiple isomorphous replacement. The enzyme is an alpha-amylase (family 13) with unique exo-amylolytic activity for glycosyltrehalosides. It cleaves the alpha-1,4 glycosidic bond adjacent to the trehalose moiety to release trehalose and maltooligo saccharide. Unlike most other family 13 glycosidases, the enzyme does not require Ca(2+) for activity, and it contains an N-terminal extension of approximately 100 amino acid residues that is homologous to N-terminal domains found in many glycosidases that recognize branched oligosaccharides. Crystallography revealed the enzyme to exist as a homodimer covalently linked by an intermolecular disulfide bond at residue C298. The existence of the intermolecular disulfide bond was confirmed by biochemical analysis and mutagenesis. The N-terminal extension forms an independent domain connected to the catalytic domain by an extended linker. The functionally essential Ca(2+) binding site found in the B domain of alpha-amylases and many other family 13 glycosidases was found to be replaced by hydrophobic packing interactions. The enzyme also contains a very unusual excursion in the (beta/alpha)(8) barrel structure of the catalytic domain. This excursion originates from the bottom of the (beta/alpha)(8) barrel between helix 6 and strand 7, but folds upward in a distorted alpha-hairpin structure to form a part of the substrate binding cleft wall that is possibly critical for the enzyme's unique substrate selectivity. Participation of an alpha-beta loop in the formation of the substrate binding cleft is a novel feature that is not observed in other known (beta/alpha)(8) enzymes. | ||
- | + | Crystal structure of glycosyltrehalose trehalohydrolase from the hyperthermophilic archaeum Sulfolobus solfataricus.,Feese MD, Kato Y, Tamada T, Kato M, Komeda T, Miura Y, Hirose M, Hondo K, Kobayashi K, Kuroki R J Mol Biol. 2000 Aug 11;301(2):451-64. PMID:10926520<ref>PMID:10926520</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | == | + | |
- | < | + | |
[[Category: Alpha-amylase]] | [[Category: Alpha-amylase]] | ||
[[Category: Sulfolobus solfataricus]] | [[Category: Sulfolobus solfataricus]] |
Revision as of 11:11, 24 September 2014
CRYSTAL STRUCTURE OF GLYCOSYLTREHALOSE TREHALOHYDROLASE FROM SULFOLOBUS SOLFATARICUS
|