2lty

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
[[Image:2lty.jpg|left|200px]]
 
- 
{{STRUCTURE_2lty| PDB=2lty | SCENE= }}
{{STRUCTURE_2lty| PDB=2lty | SCENE= }}
- 
===NEDD4L WW2 domain in complex with a Smad7 derived peptide===
===NEDD4L WW2 domain in complex with a Smad7 derived peptide===
- 
{{ABSTRACT_PUBMED_22921829}}
{{ABSTRACT_PUBMED_22921829}}
 +
 +
==Disease==
 +
[[http://www.uniprot.org/uniprot/SMAD7_HUMAN SMAD7_HUMAN]] Genetic variations in SMAD7 influence susceptibility to colorectal cancer type 3 (CRCS3) [MIM:[http://omim.org/entry/612229 612229]]. Colorectal cancer consists of tumors or cancer of either the colon or rectum or both. Cancers of the large intestine are the second most common form of cancer found in males and females. Symptoms include rectal bleeding, occult blood in stools, bowel obstruction and weight loss. Treatment is based largely on the extent of cancer penetration into the intestinal wall. Surgical cures are possible if the malignancy is confined to the intestine. Risk can be reduced when following a diet which is low in fat and high in fiber.<ref>PMID:17934461</ref>
 +
 +
==Function==
 +
[[http://www.uniprot.org/uniprot/NED4L_HUMAN NED4L_HUMAN]] E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Inhibits TGF-beta signaling by triggering SMAD2 and TGFBR1 ubiquitination and proteasome-dependent degradation. Promotes ubiquitination and internalization of various plasma membrane channels such as ENaC, Nav1.2, Nav1.3, Nav1.5, Nav1.7, Nav1.8, Kv1.3, EAAT1 or CLC5. Promotes ubiquitination and degradation of SGK1 and TNK2.<ref>PMID:12911626</ref><ref>PMID:15217910</ref><ref>PMID:15489223</ref><ref>PMID:15040001</ref><ref>PMID:15496141</ref><ref>PMID:15576372</ref><ref>PMID:19144635</ref> [[http://www.uniprot.org/uniprot/SMAD7_HUMAN SMAD7_HUMAN]] Antagonist of signaling by TGF-beta (transforming growth factor) type 1 receptor superfamily members; has been shown to inhibit TGF-beta (Transforming growth factor) and activin signaling by associating with their receptors thus preventing SMAD2 access. Functions as an adapter to recruit SMURF2 to the TGF-beta receptor complex. Also acts by recruiting the PPP1R15A-PP1 complex to TGFBR1, which promotes its dephosphorylation. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator (By similarity).<ref>PMID:9892009</ref><ref>PMID:11163210</ref><ref>PMID:12023024</ref><ref>PMID:14718519</ref><ref>PMID:17327236</ref>
==About this Structure==
==About this Structure==
[[2lty]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LTY OCA].
[[2lty]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LTY OCA].
 +
 +
==Reference==
 +
<references group="xtra"/><references/>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Aragon, E.]]
[[Category: Aragon, E.]]

Revision as of 01:23, 25 March 2013

Template:STRUCTURE 2lty

Contents

NEDD4L WW2 domain in complex with a Smad7 derived peptide

Template:ABSTRACT PUBMED 22921829

Disease

[SMAD7_HUMAN] Genetic variations in SMAD7 influence susceptibility to colorectal cancer type 3 (CRCS3) [MIM:612229]. Colorectal cancer consists of tumors or cancer of either the colon or rectum or both. Cancers of the large intestine are the second most common form of cancer found in males and females. Symptoms include rectal bleeding, occult blood in stools, bowel obstruction and weight loss. Treatment is based largely on the extent of cancer penetration into the intestinal wall. Surgical cures are possible if the malignancy is confined to the intestine. Risk can be reduced when following a diet which is low in fat and high in fiber.[1]

Function

[NED4L_HUMAN] E3 ubiquitin-protein ligase which accepts ubiquitin from an E2 ubiquitin-conjugating enzyme in the form of a thioester and then directly transfers the ubiquitin to targeted substrates. Inhibits TGF-beta signaling by triggering SMAD2 and TGFBR1 ubiquitination and proteasome-dependent degradation. Promotes ubiquitination and internalization of various plasma membrane channels such as ENaC, Nav1.2, Nav1.3, Nav1.5, Nav1.7, Nav1.8, Kv1.3, EAAT1 or CLC5. Promotes ubiquitination and degradation of SGK1 and TNK2.[2][3][4][5][6][7][8] [SMAD7_HUMAN] Antagonist of signaling by TGF-beta (transforming growth factor) type 1 receptor superfamily members; has been shown to inhibit TGF-beta (Transforming growth factor) and activin signaling by associating with their receptors thus preventing SMAD2 access. Functions as an adapter to recruit SMURF2 to the TGF-beta receptor complex. Also acts by recruiting the PPP1R15A-PP1 complex to TGFBR1, which promotes its dephosphorylation. Positively regulates PDPK1 kinase activity by stimulating its dissociation from the 14-3-3 protein YWHAQ which acts as a negative regulator (By similarity).[9][10][11][12][13]

About this Structure

2lty is a 2 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA.

Reference

  1. Broderick P, Carvajal-Carmona L, Pittman AM, Webb E, Howarth K, Rowan A, Lubbe S, Spain S, Sullivan K, Fielding S, Jaeger E, Vijayakrishnan J, Kemp Z, Gorman M, Chandler I, Papaemmanuil E, Penegar S, Wood W, Sellick G, Qureshi M, Teixeira A, Domingo E, Barclay E, Martin L, Sieber O, Kerr D, Gray R, Peto J, Cazier JB, Tomlinson I, Houlston RS. A genome-wide association study shows that common alleles of SMAD7 influence colorectal cancer risk. Nat Genet. 2007 Nov;39(11):1315-7. Epub 2007 Oct 14. PMID:17934461 doi:ng.2007.18
  2. Boehmer C, Henke G, Schniepp R, Palmada M, Rothstein JD, Broer S, Lang F. Regulation of the glutamate transporter EAAT1 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid-inducible kinase isoforms SGK1/3 and protein kinase B. J Neurochem. 2003 Sep;86(5):1181-8. PMID:12911626
  3. van Bemmelen MX, Rougier JS, Gavillet B, Apotheloz F, Daidie D, Tateyama M, Rivolta I, Thomas MA, Kass RS, Staub O, Abriel H. Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ Res. 2004 Aug 6;95(3):284-91. Epub 2004 Jun 24. PMID:15217910 doi:10.1161/01.RES.0000136816.05109.89
  4. Hryciw DH, Ekberg J, Lee A, Lensink IL, Kumar S, Guggino WB, Cook DI, Pollock CA, Poronnik P. Nedd4-2 functionally interacts with ClC-5: involvement in constitutive albumin endocytosis in proximal tubule cells. J Biol Chem. 2004 Dec 31;279(53):54996-5007. Epub 2004 Oct 15. PMID:15489223 doi:M411491200
  5. Henke G, Maier G, Wallisch S, Boehmer C, Lang F. Regulation of the voltage gated K+ channel Kv1.3 by the ubiquitin ligase Nedd4-2 and the serum and glucocorticoid inducible kinase SGK1. J Cell Physiol. 2004 May;199(2):194-9. PMID:15040001 doi:10.1002/jcp.10430
  6. Kuratomi G, Komuro A, Goto K, Shinozaki M, Miyazawa K, Miyazono K, Imamura T. NEDD4-2 (neural precursor cell expressed, developmentally down-regulated 4-2) negatively regulates TGF-beta (transforming growth factor-beta) signalling by inducing ubiquitin-mediated degradation of Smad2 and TGF-beta type I receptor. Biochem J. 2005 Mar 15;386(Pt 3):461-70. PMID:15496141 doi:BJ20040738
  7. Zhou R, Snyder PM. Nedd4-2 phosphorylation induces serum and glucocorticoid-regulated kinase (SGK) ubiquitination and degradation. J Biol Chem. 2005 Feb 11;280(6):4518-23. Epub 2004 Dec 2. PMID:15576372 doi:10.1074/jbc.M411053200
  8. Chan W, Tian R, Lee YF, Sit ST, Lim L, Manser E. Down-regulation of active ACK1 is mediated by association with the E3 ubiquitin ligase Nedd4-2. J Biol Chem. 2009 Mar 20;284(12):8185-94. doi: 10.1074/jbc.M806877200. Epub 2009 , Jan 14. PMID:19144635 doi:10.1074/jbc.M806877200
  9. Lebrun JJ, Takabe K, Chen Y, Vale W. Roles of pathway-specific and inhibitory Smads in activin receptor signaling. Mol Endocrinol. 1999 Jan;13(1):15-23. PMID:9892009
  10. Kavsak P, Rasmussen RK, Causing CG, Bonni S, Zhu H, Thomsen GH, Wrana JL. Smad7 binds to Smurf2 to form an E3 ubiquitin ligase that targets the TGF beta receptor for degradation. Mol Cell. 2000 Dec;6(6):1365-75. PMID:11163210
  11. Liu X, Nagarajan RP, Vale W, Chen Y. Phosphorylation regulation of the interaction between Smad7 and activin type I receptor. FEBS Lett. 2002 May 22;519(1-3):93-8. PMID:12023024
  12. Shi W, Sun C, He B, Xiong W, Shi X, Yao D, Cao X. GADD34-PP1c recruited by Smad7 dephosphorylates TGFbeta type I receptor. J Cell Biol. 2004 Jan 19;164(2):291-300. Epub 2004 Jan 12. PMID:14718519 doi:10.1083/jcb.200307151
  13. Seong HA, Jung H, Kim KT, Ha H. 3-Phosphoinositide-dependent PDK1 negatively regulates transforming growth factor-beta-induced signaling in a kinase-dependent manner through physical interaction with Smad proteins. J Biol Chem. 2007 Apr 20;282(16):12272-89. Epub 2007 Feb 27. PMID:17327236 doi:10.1074/jbc.M609279200

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools