2le8
From Proteopedia
Line 1: | Line 1: | ||
- | [[Image:2le8.jpg|left|200px]] | ||
- | |||
{{STRUCTURE_2le8| PDB=2le8 | SCENE= }} | {{STRUCTURE_2le8| PDB=2le8 | SCENE= }} | ||
- | |||
===The protein complex for DNA replication=== | ===The protein complex for DNA replication=== | ||
+ | ==Disease== | ||
+ | [[http://www.uniprot.org/uniprot/CDT1_HUMAN CDT1_HUMAN]] Defects in CDT1 are the cause of Meier-Gorlin syndrome type 4 (MGORS4) [MIM:[http://omim.org/entry/613804 613804]]. MGORS4 is a syndrome characterized by bilateral microtia, aplasia/hypoplasia of the patellae, and severe intrauterine and postnatal growth retardation with short stature and poor weight gain. Additional clinical findings include anomalies of cranial sutures, microcephaly, apparently low-set and simple ears, microstomia, full lips, highly arched or cleft palate, micrognathia, genitourinary tract anomalies, and various skeletal anomalies. While almost all cases have primordial dwarfism with substantial prenatal and postnatal growth retardation, not all cases have microcephaly, and microtia and absent/hypoplastic patella are absent in some. Despite the presence of microcephaly, intellect is usually normal.<ref>PMID:21358632</ref><ref>PMID:21358631</ref> | ||
+ | |||
+ | ==Function== | ||
+ | [[http://www.uniprot.org/uniprot/MCM6_HUMAN MCM6_HUMAN]] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity.<ref>PMID:9305914</ref> [[http://www.uniprot.org/uniprot/CDT1_HUMAN CDT1_HUMAN]] Cooperates with CDC6 to promote the loading of the mini-chromosome maintenance complex onto chromatin to form the pre-replication complex necessary to initiate DNA replication. Binds DNA in a sequence-, strand-, and conformation-independent manner. Potential oncogene.<ref>PMID:11125146</ref><ref>PMID:21856198</ref><ref>PMID:14672932</ref><ref>PMID:14993212</ref>[UniProtKB:Q8R4E9] | ||
==About this Structure== | ==About this Structure== | ||
[[2le8]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LE8 OCA]. | [[2le8]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LE8 OCA]. | ||
+ | |||
+ | ==Reference== | ||
+ | <references group="xtra"/><references/> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Liu, C.]] | [[Category: Liu, C.]] |
Revision as of 11:39, 24 March 2013
Contents |
The protein complex for DNA replication
Disease
[CDT1_HUMAN] Defects in CDT1 are the cause of Meier-Gorlin syndrome type 4 (MGORS4) [MIM:613804]. MGORS4 is a syndrome characterized by bilateral microtia, aplasia/hypoplasia of the patellae, and severe intrauterine and postnatal growth retardation with short stature and poor weight gain. Additional clinical findings include anomalies of cranial sutures, microcephaly, apparently low-set and simple ears, microstomia, full lips, highly arched or cleft palate, micrognathia, genitourinary tract anomalies, and various skeletal anomalies. While almost all cases have primordial dwarfism with substantial prenatal and postnatal growth retardation, not all cases have microcephaly, and microtia and absent/hypoplastic patella are absent in some. Despite the presence of microcephaly, intellect is usually normal.[1][2]
Function
[MCM6_HUMAN] Acts as component of the MCM2-7 complex (MCM complex) which is the putative replicative helicase essential for 'once per cell cycle' DNA replication initiation and elongation in eukaryotic cells. The active ATPase sites in the MCM2-7 ring are formed through the interaction surfaces of two neighboring subunits such that a critical structure of a conserved arginine finger motif is provided in trans relative to the ATP-binding site of the Walker A box of the adjacent subunit. The six ATPase active sites, however, are likely to contribute differentially to the complex helicase activity.[3] [CDT1_HUMAN] Cooperates with CDC6 to promote the loading of the mini-chromosome maintenance complex onto chromatin to form the pre-replication complex necessary to initiate DNA replication. Binds DNA in a sequence-, strand-, and conformation-independent manner. Potential oncogene.[4][5][6][7][UniProtKB:Q8R4E9]
About this Structure
2le8 is a 2 chain structure with sequence from Homo sapiens. Full experimental information is available from OCA.
Reference
- ↑ Bicknell LS, Bongers EM, Leitch A, Brown S, Schoots J, Harley ME, Aftimos S, Al-Aama JY, Bober M, Brown PA, van Bokhoven H, Dean J, Edrees AY, Feingold M, Fryer A, Hoefsloot LH, Kau N, Knoers NV, Mackenzie J, Opitz JM, Sarda P, Ross A, Temple IK, Toutain A, Wise CA, Wright M, Jackson AP. Mutations in the pre-replication complex cause Meier-Gorlin syndrome. Nat Genet. 2011 Feb 27;43(4):356-9. doi: 10.1038/ng.775. PMID:21358632 doi:10.1038/ng.775
- ↑ Guernsey DL, Matsuoka M, Jiang H, Evans S, Macgillivray C, Nightingale M, Perry S, Ferguson M, LeBlanc M, Paquette J, Patry L, Rideout AL, Thomas A, Orr A, McMaster CR, Michaud JL, Deal C, Langlois S, Superneau DW, Parkash S, Ludman M, Skidmore DL, Samuels ME. Mutations in origin recognition complex gene ORC4 cause Meier-Gorlin syndrome. Nat Genet. 2011 Feb 27;43(4):360-4. doi: 10.1038/ng.777. PMID:21358631 doi:10.1038/ng.777
- ↑ Ishimi Y. A DNA helicase activity is associated with an MCM4, -6, and -7 protein complex. J Biol Chem. 1997 Sep 26;272(39):24508-13. PMID:9305914
- ↑ Wohlschlegel JA, Dwyer BT, Dhar SK, Cvetic C, Walter JC, Dutta A. Inhibition of eukaryotic DNA replication by geminin binding to Cdt1. Science. 2000 Dec 22;290(5500):2309-12. PMID:11125146 doi:10.1126/science.290.5500.2309
- ↑ Miotto B, Struhl K. JNK1 phosphorylation of Cdt1 inhibits recruitment of HBO1 histone acetylase and blocks replication licensing in response to stress. Mol Cell. 2011 Oct 7;44(1):62-71. doi: 10.1016/j.molcel.2011.06.021. PMID:21856198 doi:10.1016/j.molcel.2011.06.021
- ↑ Cook JG, Chasse DA, Nevins JR. The regulated association of Cdt1 with minichromosome maintenance proteins and Cdc6 in mammalian cells. J Biol Chem. 2004 Mar 5;279(10):9625-33. Epub 2003 Dec 11. PMID:14672932 doi:10.1074/jbc.M311933200
- ↑ Sugimoto N, Tatsumi Y, Tsurumi T, Matsukage A, Kiyono T, Nishitani H, Fujita M. Cdt1 phosphorylation by cyclin A-dependent kinases negatively regulates its function without affecting geminin binding. J Biol Chem. 2004 May 7;279(19):19691-7. Epub 2004 Mar 1. PMID:14993212 doi:10.1074/jbc.M313175200