4f02

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
[[Image:4f02.png|left|200px]]
 
- 
{{STRUCTURE_4f02| PDB=4f02 | SCENE= }}
{{STRUCTURE_4f02| PDB=4f02 | SCENE= }}
- 
===Crystal structure of the PABP-binding site of eIF4G in complex with RRM1-2 of PABP and poly(A)===
===Crystal structure of the PABP-binding site of eIF4G in complex with RRM1-2 of PABP and poly(A)===
- 
{{ABSTRACT_PUBMED_23041282}}
{{ABSTRACT_PUBMED_23041282}}
 +
 +
==Disease==
 +
[[http://www.uniprot.org/uniprot/IF4G1_HUMAN IF4G1_HUMAN]] Defects in EIF4G1 are the cause of Parkinson disease type 18 (PARK18) [MIM:[http://omim.org/entry/614251 614251]]. An autosomal dominant, late-onset form of Parkinson disease. Parkinson disease is a complex neurodegenerative disorder characterized by bradykinesia, resting tremor, muscular rigidity and postural instability, as well as by a clinically significant response to treatment with levodopa. The pathology involves the loss of dopaminergic neurons in the substantia nigra and the presence of Lewy bodies (intraneuronal accumulations of aggregated proteins), in surviving neurons in various areas of the brain.<ref>PMID:21907011</ref>
 +
 +
==Function==
 +
[[http://www.uniprot.org/uniprot/PABP1_HUMAN PABP1_HUMAN]] Binds the poly(A) tail of mRNA. May be involved in cytoplasmic regulatory processes of mRNA metabolism such as pre-mRNA splicing. Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain. Involved in regulation of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons; for the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed.<ref>PMID:11051545</ref><ref>PMID:18447585</ref> [[http://www.uniprot.org/uniprot/IF4G1_HUMAN IF4G1_HUMAN]] Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome.
==About this Structure==
==About this Structure==
[[4f02]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4F02 OCA].
[[4f02]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4F02 OCA].
 +
 +
==Reference==
 +
<references group="xtra"/><references/>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Gehring, K B.]]
[[Category: Gehring, K B.]]

Revision as of 05:19, 25 March 2013

Template:STRUCTURE 4f02

Contents

Crystal structure of the PABP-binding site of eIF4G in complex with RRM1-2 of PABP and poly(A)

Template:ABSTRACT PUBMED 23041282

Disease

[IF4G1_HUMAN] Defects in EIF4G1 are the cause of Parkinson disease type 18 (PARK18) [MIM:614251]. An autosomal dominant, late-onset form of Parkinson disease. Parkinson disease is a complex neurodegenerative disorder characterized by bradykinesia, resting tremor, muscular rigidity and postural instability, as well as by a clinically significant response to treatment with levodopa. The pathology involves the loss of dopaminergic neurons in the substantia nigra and the presence of Lewy bodies (intraneuronal accumulations of aggregated proteins), in surviving neurons in various areas of the brain.[1]

Function

[PABP1_HUMAN] Binds the poly(A) tail of mRNA. May be involved in cytoplasmic regulatory processes of mRNA metabolism such as pre-mRNA splicing. Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Involved in translationally coupled mRNA turnover. Implicated with other RNA-binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding-region determinant of instability (mCRD) domain. Involved in regulation of nonsense-mediated decay (NMD) of mRNAs containing premature stop codons; for the recognition of premature termination codons (PTC) and initiation of NMD a competitive interaction between UPF1 and PABPC1 with the ribosome-bound release factors is proposed.[2][3] [IF4G1_HUMAN] Component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome.

About this Structure

4f02 is a 6 chain structure with sequence from Homo sapiens. Full crystallographic information is available from OCA.

Reference

  1. Chartier-Harlin MC, Dachsel JC, Vilarino-Guell C, Lincoln SJ, Lepretre F, Hulihan MM, Kachergus J, Milnerwood AJ, Tapia L, Song MS, Le Rhun E, Mutez E, Larvor L, Duflot A, Vanbesien-Mailliot C, Kreisler A, Ross OA, Nishioka K, Soto-Ortolaza AI, Cobb SA, Melrose HL, Behrouz B, Keeling BH, Bacon JA, Hentati E, Williams L, Yanagiya A, Sonenberg N, Lockhart PJ, Zubair AC, Uitti RJ, Aasly JO, Krygowska-Wajs A, Opala G, Wszolek ZK, Frigerio R, Maraganore DM, Gosal D, Lynch T, Hutchinson M, Bentivoglio AR, Valente EM, Nichols WC, Pankratz N, Foroud T, Gibson RA, Hentati F, Dickson DW, Destee A, Farrer MJ. Translation initiator EIF4G1 mutations in familial Parkinson disease. Am J Hum Genet. 2011 Sep 9;89(3):398-406. doi: 10.1016/j.ajhg.2011.08.009. PMID:21907011 doi:10.1016/j.ajhg.2011.08.009
  2. Grosset C, Chen CY, Xu N, Sonenberg N, Jacquemin-Sablon H, Shyu AB. A mechanism for translationally coupled mRNA turnover: interaction between the poly(A) tail and a c-fos RNA coding determinant via a protein complex. Cell. 2000 Sep 29;103(1):29-40. PMID:11051545
  3. Singh G, Rebbapragada I, Lykke-Andersen J. A competition between stimulators and antagonists of Upf complex recruitment governs human nonsense-mediated mRNA decay. PLoS Biol. 2008 Apr 29;6(4):e111. doi: 10.1371/journal.pbio.0060111. PMID:18447585 doi:10.1371/journal.pbio.0060111

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools