We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
1sz1
From Proteopedia
(Difference between revisions)
m (Protected "1sz1" [edit=sysop:move=sysop]) |
|||
| Line 1: | Line 1: | ||
| - | [[ | + | ==Mechanism of CCA-adding enzymes specificity revealed by crystal structures of ternary complexes== |
| + | <StructureSection load='1sz1' size='340' side='right' caption='[[1sz1]], [[Resolution|resolution]] 6.21Å' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[1sz1]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Archaeoglobus_fulgidus Archaeoglobus fulgidus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1SZ1 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1SZ1 FirstGlance]. <br> | ||
| + | </td></tr><tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=1MA:6-HYDRO-1-METHYLADENOSINE-5-MONOPHOSPHATE'>1MA</scene>, <scene name='pdbligand=2MG:2N-METHYLGUANOSINE-5-MONOPHOSPHATE'>2MG</scene>, <scene name='pdbligand=5MC:5-METHYLCYTIDINE-5-MONOPHOSPHATE'>5MC</scene>, <scene name='pdbligand=5MU:5-METHYLURIDINE+5-MONOPHOSPHATE'>5MU</scene>, <scene name='pdbligand=7MG:7N-METHYL-8-HYDROGUANOSINE-5-MONOPHOSPHATE'>7MG</scene>, <scene name='pdbligand=H2U:5,6-DIHYDROURIDINE-5-MONOPHOSPHATE'>H2U</scene>, <scene name='pdbligand=M2G:N2-DIMETHYLGUANOSINE-5-MONOPHOSPHATE'>M2G</scene>, <scene name='pdbligand=OMC:O2-METHYLYCYTIDINE-5-MONOPHOSPHATE'>OMC</scene>, <scene name='pdbligand=OMG:O2-METHYLGUANOSINE-5-MONOPHOSPHATE'>OMG</scene>, <scene name='pdbligand=PSU:PSEUDOURIDINE-5-MONOPHOSPHATE'>PSU</scene>, <scene name='pdbligand=YG:WYBUTOSINE'>YG</scene></td></tr> | ||
| + | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1tfw|1tfw]], [[1tfy|1tfy]]</td></tr> | ||
| + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/tRNA_adenylyltransferase tRNA adenylyltransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.25 2.7.7.25] </span></td></tr> | ||
| + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1sz1 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1sz1 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1sz1 RCSB], [http://www.ebi.ac.uk/pdbsum/1sz1 PDBsum]</span></td></tr> | ||
| + | <table> | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/sz/1sz1_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | Transfer RNA nucleotidyltransferases (CCA-adding enzymes) are responsible for the maturation or repair of the functional 3' end of tRNAs by means of the addition of the essential nucleotides CCA. However, it is unclear how tRNA nucleotidyltransferases polymerize CCA onto the 3' terminus of immature tRNAs without using a nucleic acid template. Here we describe the crystal structure of the Archaeoglobus fulgidus tRNA nucleotidyltransferase in complex with tRNA. We also present ternary complexes of this enzyme with both RNA duplex mimics of the tRNA acceptor stem that terminate with the nucleotides C74 or C75, as well as the appropriate incoming nucleoside 5'-triphosphates. A single nucleotide-binding pocket exists whose specificity for both CTP and ATP is determined by the protein side chain of Arg 224 and backbone phosphates of the tRNA, which are non-complementary to and thus exclude UTP and GTP. Discrimination between CTP or ATP at a given addition step and at termination arises from changes in the size and shape of the nucleotide binding site that is progressively altered by the elongating 3' end of the tRNA. | ||
| - | + | Mechanism of transfer RNA maturation by CCA-adding enzyme without using an oligonucleotide template.,Xiong Y, Steitz TA Nature. 2004 Aug 5;430(7000):640-5. PMID:15295590<ref>PMID:15295590</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| + | </div> | ||
| - | + | ==See Also== | |
| - | + | *[[CCA-adding enzyme|CCA-adding enzyme]] | |
| - | == | + | == References == |
| - | [[ | + | <references/> |
| - | + | __TOC__ | |
| - | == | + | </StructureSection> |
| - | < | + | |
[[Category: Archaeoglobus fulgidus]] | [[Category: Archaeoglobus fulgidus]] | ||
[[Category: TRNA adenylyltransferase]] | [[Category: TRNA adenylyltransferase]] | ||
Revision as of 17:21, 29 September 2014
Mechanism of CCA-adding enzymes specificity revealed by crystal structures of ternary complexes
| |||||||||||

