We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.
2pru
From Proteopedia
(Difference between revisions)
m (Protected "2pru" [edit=sysop:move=sysop]) |
|||
| Line 1: | Line 1: | ||
| - | [[ | + | ==NMR Structure of Human apoS100B at 10C== |
| + | <StructureSection load='2pru' size='340' side='right' caption='[[2pru]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''> | ||
| + | == Structural highlights == | ||
| + | <table><tr><td colspan='2'>[[2pru]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2PRU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2PRU FirstGlance]. <br> | ||
| + | </td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1b4c|1b4c]], [[1cfp|1cfp]], [[1nsh|1nsh]]</td></tr> | ||
| + | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">S100B ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr> | ||
| + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2pru FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2pru OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2pru RCSB], [http://www.ebi.ac.uk/pdbsum/2pru PDBsum]</span></td></tr> | ||
| + | <table> | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/pr/2pru_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | S100B is one of the best-characterized members of the calcium-signaling S100 protein family. Most S100 proteins are dimeric, with each monomer containing two EF-hand calcium-binding sites (EF1, EF2). S100B and other S100 proteins respond to calcium increases in the cell by coordinating calcium and undergoing a conformational change that allows them to interact with a variety of cellular targets. Although several three dimensional structures of S100 proteins are available in the calcium-free (apo-) state it has been observed that these structures appear to adopt a wide range of conformations in the EF2 site with respect to the positioning of helix III, the helix that undergoes the most dramatic calcium-induced conformational change. In this work, we have determined the structure of human apo-S100B at 10 degrees C to examine whether temperature might be responsible for these structural differences. Further, we have used this data, and other available apo-S100 structures, to show that despite the range of interhelical angles adopted in the apo-S100 structures, normal Gaussian distributions about the mean angles found in the structure of human apo-S100B are observed. This finding, only obvious from the analysis of all available apo-S100 proteins, provides direct structural evidence that helix III is a loosely packed helix. This is likely a necessary functional property of the S100 proteins that facilitates the calcium-induced conformational change of helix III. In contrast, the calcium-bound structures of the S100 proteins show significantly smaller variability in the interhelical angles. This shows that calcium binding to the S100 proteins causes not only a conformational change but results in a tighter distribution of helices within the EF2 calcium binding site required for target protein interactions. Proteins 2008. (c) 2008 Wiley-Liss, Inc. | ||
| - | + | Analysis of the structure of human apo-S100B at low temperature indicates a unimodal conformational distribution is adopted by calcium-free S100 proteins.,Malik S, Revington M, Smith SP, Shaw GS Proteins. 2008 Apr 2;. PMID:18384084<ref>PMID:18384084</ref> | |
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| + | </div> | ||
| - | + | ==See Also== | |
| - | + | *[[S100 protein|S100 protein]] | |
| - | == | + | == References == |
| - | [[ | + | <references/> |
| - | + | __TOC__ | |
| - | == | + | </StructureSection> |
| - | < | + | |
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Malik, S.]] | [[Category: Malik, S.]] | ||
Revision as of 19:44, 30 September 2014
NMR Structure of Human apoS100B at 10C
| |||||||||||

