1uqu
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==TREHALOSE-6-PHOSPHATE FROM E. COLI BOUND WITH UDP-GLUCOSE.== |
+ | <StructureSection load='1uqu' size='340' side='right' caption='[[1uqu]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1uqu]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UQU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1UQU FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=UPG:URIDINE-5-DIPHOSPHATE-GLUCOSE'>UPG</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1gz5|1gz5]], [[1uqt|1uqt]]</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Alpha,alpha-trehalose-phosphate_synthase_(UDP-forming) Alpha,alpha-trehalose-phosphate synthase (UDP-forming)], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.4.1.15 2.4.1.15] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1uqu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uqu OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1uqu RCSB], [http://www.ebi.ac.uk/pdbsum/1uqu PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/uq/1uqu_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Trehalose is an unusual non-reducing disaccharide that plays a variety of biological roles, from food storage to cellular protection from environmental stresses such as desiccation, pressure, heat-shock, extreme cold, and oxygen radicals. It is also an integral component of the cell-wall glycolipids of mycobacteria. The primary enzymatic route to trehalose first involves the transfer of glucose from a UDP-glucose donor to glucose-6-phosphate to form alpha,alpha-1,1 trehalose-6-phosphate. This reaction, in which the configurations of two glycosidic bonds are set simultaneously, is catalyzed by the glycosyltransferase trehalose-6-phosphate synthase (OtsA), which acts with retention of the anomeric configuration of the UDP-sugar donor. The classification of activated sugar-dependent glycosyltransferases into approximately 70 distinct families based upon amino acid sequence similarities places OtsA in glycosyltransferase family 20 (see afmb.cnrs-mrs.fr/CAZY/). The recent 2.4 A structure of Escherichia coli OtsA revealed a two-domain enzyme with catalysis occurring at the interface of the twin beta/alpha/beta domains. Here we present the 2.0 A structures of the E. coli OtsA in complex with either UDP-Glc or the non-transferable analogue UDP-2-deoxy-2-fluoroglucose. Both complexes unveil the donor subsite interactions, confirming a strong similarity to glycogen phosphorylases, and reveal substantial conformational differences to the previously reported complex with UDP and glucose 6-phosphate. Both the relative orientation of the two domains and substantial (up to 10 A) movements of an N-terminal loop (residues 9-22) characterize the more open "relaxed" conformation of the binary UDP-sugar complexes reported here. | ||
- | + | The donor subsite of trehalose-6-phosphate synthase: binary complexes with UDP-glucose and UDP-2-deoxy-2-fluoro-glucose at 2 A resolution.,Gibson RP, Tarling CA, Roberts S, Withers SG, Davies GJ J Biol Chem. 2004 Jan 16;279(3):1950-5. Epub 2003 Oct 21. PMID:14570926<ref>PMID:14570926</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: Davies, G J.]] | [[Category: Davies, G J.]] |
Revision as of 19:51, 29 September 2014
TREHALOSE-6-PHOSPHATE FROM E. COLI BOUND WITH UDP-GLUCOSE.
|