1yrr
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | [[ | + | ==Crystal Structure Of The N-Acetylglucosamine-6-Phosphate Deacetylase From Escherichia Coli K12 at 2.0 A Resolution== |
+ | <StructureSection load='1yrr' size='340' side='right' caption='[[1yrr]], [[Resolution|resolution]] 2.00Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[1yrr]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1YRR OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1YRR FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">nagA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 Escherichia coli])</td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/N-acetylglucosamine-6-phosphate_deacetylase N-acetylglucosamine-6-phosphate deacetylase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.5.1.25 3.5.1.25] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1yrr FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1yrr OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1yrr RCSB], [http://www.ebi.ac.uk/pdbsum/1yrr PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/yr/1yrr_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | We report the crystal structure of the apoenzyme of N-acetylglucosamine-6-phosphate (GlcNAc6P) deacetylase from Escherichia coli (EcNAGPase) and the spectrometric evidence of the presence of Zn2+ in the native protein. The GlcNAc6P deacetylase is an enzyme of the amino sugar catabolic pathway that catalyzes the conversion of the GlcNAc6P into glucosamine 6-phosphate (GlcN6P). The crystal structure was phased by the single isomorphous replacement with anomalous scattering (SIRAS) method using low-resolution (2.9 A) iodine anomalous scattering and it was refined against a native dataset up to 2.0 A resolution. The structure is similar to two other NAGPases whose structures are known from Thermotoga maritima (TmNAGPase) and Bacillus subtilis (BsNAGPase); however, it shows a phosphate ion bound at the metal-binding site. Compared to these previous structures, the apoenzyme shows extensive conformational changes in two loops adjacent to the active site. The E. coli enzyme is a tetramer and its dimer-dimer interface was analyzed. The tetrameric structure was confirmed in solution by small-angle X-ray scattering data. Although no metal ions were detected in the present structure, experiments of photon-induced X-ray emission (PIXE) spectra and of inductively coupled plasma emission spectroscopy (ICP-AES) with enzyme that was neither exposed to chelating agents nor metal ions during purification, revealed the presence of 1.4 atoms of Zn per polypeptide chain. Enzyme inactivation by metal-sequestering agents and subsequent reactivation by the addition of several divalent cations, demonstrate the role of metal ions in EcNAGPase structure and catalysis. | ||
- | + | Structural analysis of N-acetylglucosamine-6-phosphate deacetylase apoenzyme from Escherichia coli.,Ferreira FM, Mendoza-Hernandez G, Castaneda-Bueno M, Aparicio R, Fischer H, Calcagno ML, Oliva G J Mol Biol. 2006 Jun 2;359(2):308-21. Epub 2006 Mar 29. PMID:16630633<ref>PMID:16630633</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
- | + | <references/> | |
- | + | __TOC__ | |
- | + | </StructureSection> | |
- | + | ||
- | == | + | |
- | < | + | |
[[Category: Escherichia coli]] | [[Category: Escherichia coli]] | ||
[[Category: N-acetylglucosamine-6-phosphate deacetylase]] | [[Category: N-acetylglucosamine-6-phosphate deacetylase]] |
Revision as of 18:58, 29 September 2014
Crystal Structure Of The N-Acetylglucosamine-6-Phosphate Deacetylase From Escherichia Coli K12 at 2.0 A Resolution
|