1xgl

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
{{STRUCTURE_1xgl| PDB=1xgl | SCENE= }}
+
==HUMAN INSULIN DISULFIDE ISOMER, NMR, 10 STRUCTURES==
-
===HUMAN INSULIN DISULFIDE ISOMER, NMR, 10 STRUCTURES===
+
<StructureSection load='1xgl' size='340' side='right' caption='[[1xgl]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''>
-
{{ABSTRACT_PUBMED_7749917}}
+
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[1xgl]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XGL OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1XGL FirstGlance]. <br>
 +
</td></tr><tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1xgl FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1xgl OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1xgl RCSB], [http://www.ebi.ac.uk/pdbsum/1xgl PDBsum]</span></td></tr>
 +
<table>
 +
== Disease ==
 +
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[http://omim.org/entry/176730 176730]].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[http://omim.org/entry/125852 125852]]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[http://omim.org/entry/606176 606176]]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[http://omim.org/entry/613370 613370]]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/xg/1xgl_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
We have determined the structure of a metastable disulphide isomer of human insulin. Although not observed for proinsulin folding or insulin-chain recombination, the isomer retains ordered secondary structure and a compact hydrophobic core. Comparison with native insulin reveals a global rearrangement in the orientation of A- and B-chains. One face of the protein's surface is nevertheless in common between native and non-native structures. This face contains receptor-binding determinants, rationalizing the partial biological activity of the isomer. Structures of native and non-native disulphide isomers also define alternative three-dimensional templates. Threading of insulin-like sequences provide an experimental realization of the inverse protein-folding problem.
-
==Disease==
+
Structure of a protein in a kinetic trap.,Hua QX, Gozani SN, Chance RE, Hoffmann JA, Frank BH, Weiss MA Nat Struct Biol. 1995 Feb;2(2):129-38. PMID:7749917<ref>PMID:7749917</ref>
-
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[http://omim.org/entry/176730 176730]].<ref>PMID:3470784</ref><ref>PMID:2196279</ref><ref>PMID:4019786</ref><ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[http://omim.org/entry/125852 125852]]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[http://omim.org/entry/606176 606176]]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref><ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[http://omim.org/entry/613370 613370]]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref><ref>PMID:18162506</ref><ref>PMID:20226046</ref>
+
-
==Function==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
+
</div>
-
 
+
-
==About this Structure==
+
-
[[1xgl]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1XGL OCA].
+
==See Also==
==See Also==
*[[Molecular Playground/Insulin|Molecular Playground/Insulin]]
*[[Molecular Playground/Insulin|Molecular Playground/Insulin]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:007749917</ref><references group="xtra"/><references/>
+
__TOC__
 +
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Chance, R E.]]
[[Category: Chance, R E.]]

Revision as of 19:39, 29 September 2014

HUMAN INSULIN DISULFIDE ISOMER, NMR, 10 STRUCTURES

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox