1qbj
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | ==CRYSTAL STRUCTURE OF THE ZALPHA Z-DNA COMPLEX== | |
- | + | <StructureSection load='1qbj' size='340' side='right' caption='[[1qbj]], [[Resolution|resolution]] 2.10Å' scene=''> | |
- | + | == Structural highlights == | |
+ | <table><tr><td colspan='2'>[[1qbj]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1QBJ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1QBJ FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1qbj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qbj OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1qbj RCSB], [http://www.ebi.ac.uk/pdbsum/1qbj PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Disease == | ||
+ | [[http://www.uniprot.org/uniprot/DSRAD_HUMAN DSRAD_HUMAN]] Defects in ADAR are a cause of dyschromatosis symmetrical hereditaria (DSH) [MIM:[http://omim.org/entry/127400 127400]]; also known as reticulate acropigmentation of Dohi. DSH is a pigmentary genodermatosis of autosomal dominant inheritance characterized by a mixture of hyperpigmented and hypopigmented macules distributed on the dorsal parts of the hands and feet.<ref>PMID:12916015</ref> <ref>PMID:15146470</ref> <ref>PMID:15659327</ref> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/DSRAD_HUMAN DSRAD_HUMAN]] Catalyzes the hydrolytic deamination of adenosine to inosine in double-stranded RNA (dsRNA) referred to as A-to-I RNA editing. This may affect gene expression and function in a number of ways that include mRNA translation by changing codons and hence the amino acid sequence of proteins; pre-mRNA splicing by altering splice site recognition sequences; RNA stability by changing sequences involved in nuclease recognition; genetic stability in the case of RNA virus genomes by changing sequences during viral RNA replication; and RNA structure-dependent activities such as microRNA production or targeting or protein-RNA interactions. Can edit both viral and cellular RNAs and can edit RNAs at multiple sites (hyper-editing) or at specific sites (site-specific editing). Its cellular RNA substrates include: bladder cancer-associated protein (BLCAP), neurotransmitter receptors for glutamate (GRIA2) and serotonin (HTR2C) and GABA receptor (GABRA3). Site-specific RNA editing of transcripts encoding these proteins results in amino acid substitutions which consequently alters their functional activities. Exhibits low-level editing at the GRIA2 Q/R site, but edits efficiently at the R/G site and HOTSPOT1. Its viral RNA substrates include: hepatitis C virus (HCV), vesicular stomatitis virus (VSV), measles virus (MV), hepatitis delta virus (HDV), and human immunodeficiency virus type 1 (HIV-1). Exhibits either a proviral (HDV, MV, VSV and HIV-1) or an antiviral effect (HCV) and this can be editing-dependent (HDV and HCV), editing-independent (VSV and MV) or both (HIV-1). Impairs HCV replication via RNA editing at multiple sites. Enhances the replication of MV, VSV and HIV-1 through an editing-independent mechanism via suppression of EIF2AK2/PKR activation and function. Stimulates both the release and infectivity of HIV-1 viral particles by an editing-dependent mechanism where it associates with viral RNAs and edits adenosines in the 5'UTR and the Rev and Tat coding sequence. Can enhance viral replication of HDV via A-to-I editing at a site designated as amber/W, thereby changing an UAG amber stop codon to an UIG tryptophan (W) codon that permits synthesis of the large delta antigen (L-HDAg) which has a key role in the assembly of viral particles. However, high levels of ADAR1 inhibit HDV replication.<ref>PMID:15556947</ref> <ref>PMID:15858013</ref> <ref>PMID:16475990</ref> <ref>PMID:17079286</ref> <ref>PMID:19710021</ref> <ref>PMID:19605474</ref> <ref>PMID:19651874</ref> <ref>PMID:19908260</ref> <ref>PMID:21289159</ref> <ref>PMID:22278222</ref> | ||
+ | == Evolutionary Conservation == | ||
+ | [[Image:Consurf_key_small.gif|200px|right]] | ||
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/qb/1qbj_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The editing enzyme double-stranded RNA adenosine deaminase includes a DNA binding domain, Zalpha, which is specific for left-handed Z-DNA. The 2.1 angstrom crystal structure of Zalpha complexed to DNA reveals that the substrate is in the left-handed Z conformation. The contacts between Zalpha and Z-DNA are made primarily with the "zigzag" sugar-phosphate backbone, which provides a basis for the specificity for the Z conformation. A single base contact is observed to guanine in the syn conformation, characteristic of Z-DNA. Intriguingly, the helix-turn-helix motif, frequently used to recognize B-DNA, is used by Zalpha to contact Z-DNA. | ||
- | + | Crystal structure of the Zalpha domain of the human editing enzyme ADAR1 bound to left-handed Z-DNA.,Schwartz T, Rould MA, Lowenhaupt K, Herbert A, Rich A Science. 1999 Jun 11;284(5421):1841-5. PMID:10364558<ref>PMID:10364558</ref> | |
- | + | ||
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | ||
- | + | ||
- | + | ||
==See Also== | ==See Also== | ||
+ | *[[Adenosine deaminase|Adenosine deaminase]] | ||
*[[Z-DNA|Z-DNA]] | *[[Z-DNA|Z-DNA]] | ||
- | + | == References == | |
- | == | + | <references/> |
- | + | __TOC__ | |
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Rich, A.]] | [[Category: Rich, A.]] |
Revision as of 14:03, 29 September 2014
CRYSTAL STRUCTURE OF THE ZALPHA Z-DNA COMPLEX
|