1hls

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
{{STRUCTURE_1hls| PDB=1hls | SCENE= }}
+
==NMR STRUCTURE OF THE HUMAN INSULIN-HIS(B16)==
-
===NMR STRUCTURE OF THE HUMAN INSULIN-HIS(B16)===
+
<StructureSection load='1hls' size='340' side='right' caption='[[1hls]], [[NMR_Ensembles_of_Models | 20 NMR models]]' scene=''>
-
{{ABSTRACT_PUBMED_8025104}}
+
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[1hls]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HLS OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1HLS FirstGlance]. <br>
 +
</td></tr><tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1hls FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1hls OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1hls RCSB], [http://www.ebi.ac.uk/pdbsum/1hls PDBsum]</span></td></tr>
 +
<table>
 +
== Disease ==
 +
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[http://omim.org/entry/176730 176730]].<ref>PMID:3470784</ref> <ref>PMID:2196279</ref> <ref>PMID:4019786</ref> <ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[http://omim.org/entry/125852 125852]]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[http://omim.org/entry/606176 606176]]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref> <ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[http://omim.org/entry/613370 613370]]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref> <ref>PMID:18162506</ref> <ref>PMID:20226046</ref>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/hl/1hls_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Site-directed mutagenesis is used in conjunction with 1H nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy in order to find an insulin species amenable for structure determination in aqueous solution by NMR spectroscopy. A successful candidate in this respect, i.e., B16 Tyr--&gt;His mutant insulin, is identified and selected for detailed characterization by two-dimensional 1H NMR. This mutant species retains 43% biological potency and native folding stability, but in contrast to human insulin it remains monomeric at millimolar concentration in aqueous solution at pH 2.4. The resulting homogeneous sample allows high-quality 2D NMR spectra to be recorded. The NMR studies result in an almost complete assignment of the 1H resonance signals as well as identification of NOE cross peaks. NOE-derived distance restraints in conjunction with torsion restraints based on measured coupling constants, 3JHNH alpha, are used for structure calculations using the hybrid method of distance geometry and simulated annealing. The calculated structures show that the major part of the insulin monomer is structurally well-defined with an average rms deviation between the 20 calculated structures and the mean coordinates of 0.89 A for all backbone atoms, 0.46 A for backbone atoms (A2-A19 and B4-B28), and 1.30 A for all heavy atoms. The structure of the A-chain is composed of two helices from A2 to A7 and from A12 to A19 connected by a short extended strand. The B-chain consists of a loop, B1-B8, an alpha-helix, B9-B19, a beta-turn, B20-B23, and an extended strand from B24 to B30.(ABSTRACT TRUNCATED AT 250 WORDS)
-
==Disease==
+
High-resolution structure of an engineered biologically potent insulin monomer, B16 Tyr--&gt;His, as determined by nuclear magnetic resonance spectroscopy.,Ludvigsen S, Roy M, Thogersen H, Kaarsholm NC Biochemistry. 1994 Jul 5;33(26):7998-8006. PMID:8025104<ref>PMID:8025104</ref>
-
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Defects in INS are the cause of familial hyperproinsulinemia (FHPRI) [MIM:[http://omim.org/entry/176730 176730]].<ref>PMID:3470784</ref><ref>PMID:2196279</ref><ref>PMID:4019786</ref><ref>PMID:1601997</ref> Defects in INS are a cause of diabetes mellitus insulin-dependent type 2 (IDDM2) [MIM:[http://omim.org/entry/125852 125852]]. IDDM2 is a multifactorial disorder of glucose homeostasis that is characterized by susceptibility to ketoacidosis in the absence of insulin therapy. Clinical fetaures are polydipsia, polyphagia and polyuria which result from hyperglycemia-induced osmotic diuresis and secondary thirst. These derangements result in long-term complications that affect the eyes, kidneys, nerves, and blood vessels.<ref>PMID:18192540</ref> Defects in INS are a cause of diabetes mellitus permanent neonatal (PNDM) [MIM:[http://omim.org/entry/606176 606176]]. PNDM is a rare form of diabetes distinct from childhood-onset autoimmune diabetes mellitus type 1. It is characterized by insulin-requiring hyperglycemia that is diagnosed within the first months of life. Permanent neonatal diabetes requires lifelong therapy.<ref>PMID:17855560</ref><ref>PMID:18162506</ref> Defects in INS are a cause of maturity-onset diabetes of the young type 10 (MODY10) [MIM:[http://omim.org/entry/613370 613370]]. MODY10 is a form of diabetes that is characterized by an autosomal dominant mode of inheritance, onset in childhood or early adulthood (usually before 25 years of age), a primary defect in insulin secretion and frequent insulin-independence at the beginning of the disease.<ref>PMID:18192540</ref><ref>PMID:18162506</ref><ref>PMID:20226046</ref>
+
-
==Function==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[http://www.uniprot.org/uniprot/INS_HUMAN INS_HUMAN]] Insulin decreases blood glucose concentration. It increases cell permeability to monosaccharides, amino acids and fatty acids. It accelerates glycolysis, the pentose phosphate cycle, and glycogen synthesis in liver.
+
</div>
-
 
+
-
==About this Structure==
+
-
[[1hls]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1HLS OCA].
+
==See Also==
==See Also==
*[[Molecular Playground/Insulin|Molecular Playground/Insulin]]
*[[Molecular Playground/Insulin|Molecular Playground/Insulin]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:008025104</ref><ref group="xtra">PMID:009548925</ref><references group="xtra"/><references/>
+
__TOC__
 +
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
[[Category: Kaarsholm, N C.]]
[[Category: Kaarsholm, N C.]]
[[Category: Ludvigsen, S.]]
[[Category: Ludvigsen, S.]]
[[Category: Hormone]]
[[Category: Hormone]]

Revision as of 15:41, 29 September 2014

NMR STRUCTURE OF THE HUMAN INSULIN-HIS(B16)

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox