2can
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
- | + | ==HUMAN ORNITHINE AMINOTRANSFERASE COMPLEXED WITH L-CANALINE== | |
- | + | <StructureSection load='2can' size='340' side='right' caption='[[2can]], [[Resolution|resolution]] 2.30Å' scene=''> | |
- | + | == Structural highlights == | |
+ | <table><tr><td colspan='2'>[[2can]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2CAN OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2CAN FirstGlance]. <br> | ||
+ | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CAN:CANALINE'>CAN</scene><br> | ||
+ | <tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=PLP:PYRIDOXAL-5-PHOSPHATE'>PLP</scene></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ornithine_aminotransferase Ornithine aminotransferase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.6.1.13 2.6.1.13] </span></td></tr> | ||
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2can FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2can OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2can RCSB], [http://www.ebi.ac.uk/pdbsum/2can PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | == Disease == | ||
+ | [[http://www.uniprot.org/uniprot/OAT_HUMAN OAT_HUMAN]] Defects in OAT are the cause of hyperornithinemia with gyrate atrophy of choroid and retina (HOGA) [MIM:[http://omim.org/entry/258870 258870]]. HOGA is a slowly progressive blinding autosomal recessive disorder.<ref>PMID:3375240</ref> <ref>PMID:2793865</ref> <ref>PMID:1612597</ref> <ref>PMID:1737786</ref> <ref>PMID:7887415</ref> <ref>PMID:7668253</ref> | ||
+ | == Function == | ||
- | == | + | == Evolutionary Conservation == |
- | [[ | + | [[Image:Consurf_key_small.gif|200px|right]] |
+ | Check<jmol> | ||
+ | <jmolCheckbox> | ||
+ | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ca/2can_consurf.spt"</scriptWhenChecked> | ||
+ | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
+ | <text>to colour the structure by Evolutionary Conservation</text> | ||
+ | </jmolCheckbox> | ||
+ | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
+ | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | BACKGROUND: Ornithine aminotransferase (OAT) is a 45 kDa pyridoxal-5'-phosphate (PLP)-dependent enzyme that catalyzes the conversion of L-ornithine and 2-oxoglutarate to glutamate-delta-semialdehyde and glutamic acid, respectively. In humans, loss of OAT function causes an accumulation of ornithine that results in gyrate atrophy of the choroid and retina, a disease that progressively leads to blindness. In an effort to learn more about the structural basis of this enzyme's function, we have determined the X-ray structures of OAT in complex with two enzyme-activated suicide substrates: L-canaline, an ornithine analog, and gabaculine, an irreversible inhibitor of several related aminotransferases. RESULTS: The structures of human OAT bound to the inhibitors gabaculine and L-canaline were solved to 2.3 A at 110K by difference Fourier techniques. Both inhibitors coordinate similarly in the active site, binding covalently to the PLP cofactor and causing a 20 degrees rotation in the cofactor tilt relative to the ligand-free form. Aromatic-aromatic interactions occur between the bound gabaculine molecule and active-site residues Tyr85 and Phe177, whereas Tyr55 and Arg180 provide specific contacts to the alpha-amino and carboxyl groups of L-canaline. CONCLUSIONS: The OAT-L-canaline complex structure implicates Tyr55 and Arg180 as the residues involved in coordinating with the natural substrate ornithine during normal enzyme turnover. This correlates well with two enzyme-inactivating point mutations associated with gyrate atrophy, Tyr55-->His and Arg180-->Thr. The OAT-gabaculine complex provides the first structural evidence that the potency of the inhibitor is due to energetically favourable aromatic interactions with residues in the active site. This aromatic-binding mode may be relevant to structure-based drug design efforts against other omega-aminotransferase targets, such as GABA aminotransferase. | ||
- | + | Human ornithine aminotransferase complexed with L-canaline and gabaculine: structural basis for substrate recognition.,Shah SA, Shen BW, Brunger AT Structure. 1997 Aug 15;5(8):1067-75. PMID:9309222<ref>PMID:9309222</ref> | |
- | + | ||
- | == | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> |
- | + | </div> | |
+ | == References == | ||
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
[[Category: Homo sapiens]] | [[Category: Homo sapiens]] | ||
[[Category: Ornithine aminotransferase]] | [[Category: Ornithine aminotransferase]] |
Revision as of 01:29, 30 September 2014
HUMAN ORNITHINE AMINOTRANSFERASE COMPLEXED WITH L-CANALINE
|