We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

3g43

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
{{STRUCTURE_3g43| PDB=3g43 | SCENE= }}
+
==Crystal structure of the calmodulin-bound Cav1.2 C-terminal regulatory domain dimer==
-
===Crystal structure of the calmodulin-bound Cav1.2 C-terminal regulatory domain dimer===
+
<StructureSection load='3g43' size='340' side='right' caption='[[3g43]], [[Resolution|resolution]] 2.10&Aring;' scene=''>
-
{{ABSTRACT_PUBMED_19279214}}
+
== Structural highlights ==
 +
<table><tr><td colspan='2'>[[3g43]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3G43 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3G43 FirstGlance]. <br>
 +
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr>
 +
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2f3y|2f3y]]</td></tr>
 +
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CALM, CALM1, CALM2, CALM3, CALML2, CAM, CAM1, CAM2, CAM3, CAMB, CAMC, CAMIII ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens]), CACNA1C, CACH2, CACN2, CACNL1A1, CCHL1A1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 Homo sapiens])</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3g43 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3g43 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=3g43 RCSB], [http://www.ebi.ac.uk/pdbsum/3g43 PDBsum]</span></td></tr>
 +
</table>
 +
== Disease ==
 +
[[http://www.uniprot.org/uniprot/CAC1C_HUMAN CAC1C_HUMAN]] Defects in CACNA1C are the cause of Timothy syndrome (TS) [MIM:[http://omim.org/entry/601005 601005]]. TS is a disorder characterized by multiorgan dysfunction including lethal arrhythmias, webbing of fingers and toes, congenital heart disease, immune deficiency, intermittent hypoglycemia, cognitive abnormalities and autism.<ref>PMID:15454078</ref> <ref>PMID:15863612</ref> Defects in CACNA1C are the cause of Brugada syndrome type 3 (BRGDA3) [MIM:[http://omim.org/entry/611875 611875]]. A heart disease characterized by the association of Brugada syndrome with shortened QT intervals. Brugada syndrome is a tachyarrhythmia characterized by right bundle branch block and ST segment elevation on an electrocardiogram (ECG). It can cause the ventricles to beat so fast that the blood is prevented from circulating efficiently in the body. When this situation occurs (called ventricular fibrillation), the individual will faint and may die in a few minutes if the heart is not reset.<ref>PMID:17224476</ref>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/CAC1C_HUMAN CAC1C_HUMAN]] Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1C gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1C subunit play an important role in excitation-contraction coupling in the heart. The various isoforms display marked differences in the sensitivity to DHP compounds. Binding of calmodulin or CABP1 at the same regulatory sites results in an opposit effects on the channel function.<ref>PMID:8392192</ref> <ref>PMID:7737988</ref> <ref>PMID:9013606</ref> <ref>PMID:9607315</ref> <ref>PMID:12176756</ref> <ref>PMID:17071743</ref>
 +
== Evolutionary Conservation ==
 +
[[Image:Consurf_key_small.gif|200px|right]]
 +
Check<jmol>
 +
<jmolCheckbox>
 +
<scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/g4/3g43_consurf.spt"</scriptWhenChecked>
 +
<scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked>
 +
<text>to colour the structure by Evolutionary Conservation</text>
 +
</jmolCheckbox>
 +
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf].
 +
<div style="clear:both"></div>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Voltage-dependent calcium channels (Ca(V)) open in response to changes in membrane potential, but their activity is modulated by Ca(2+) binding to calmodulin (CaM). Structural studies of this family of channels have focused on CaM bound to the IQ motif; however, the minimal differences between structures cannot adequately describe CaM's role in the regulation of these channels. We report a unique crystal structure of a 77-residue fragment of the Ca(V)1.2 alpha(1) subunit carboxyl terminus, which includes a tandem of the pre-IQ and IQ domains, in complex with Ca(2+).CaM in 2 distinct binding modes. The structure of the Ca(V)1.2 fragment is an unusual dimer of 2 coiled-coiled pre-IQ regions bridged by 2 Ca(2+).CaMs interacting with the pre-IQ regions and a canonical Ca(V)1-IQ-Ca(2+).CaM complex. Native Ca(V)1.2 channels are shown to be a mixture of monomers/dimers and a point mutation in the pre-IQ region predicted to abolish the coiled-coil structure significantly reduces Ca(2+)-dependent inactivation of heterologously expressed Ca(V)1.2 channels.
-
==Disease==
+
Crystal structure of dimeric cardiac L-type calcium channel regulatory domains bridged by Ca2+* calmodulins.,Fallon JL, Baker MR, Xiong L, Loy RE, Yang G, Dirksen RT, Hamilton SL, Quiocho FA Proc Natl Acad Sci U S A. 2009 Mar 31;106(13):5135-40. Epub 2009 Mar 11. PMID:19279214<ref>PMID:19279214</ref>
-
[[http://www.uniprot.org/uniprot/CAC1C_HUMAN CAC1C_HUMAN]] Defects in CACNA1C are the cause of Timothy syndrome (TS) [MIM:[http://omim.org/entry/601005 601005]]. TS is a disorder characterized by multiorgan dysfunction including lethal arrhythmias, webbing of fingers and toes, congenital heart disease, immune deficiency, intermittent hypoglycemia, cognitive abnormalities and autism.<ref>PMID:15454078</ref><ref>PMID:15863612</ref> Defects in CACNA1C are the cause of Brugada syndrome type 3 (BRGDA3) [MIM:[http://omim.org/entry/611875 611875]]. A heart disease characterized by the association of Brugada syndrome with shortened QT intervals. Brugada syndrome is a tachyarrhythmia characterized by right bundle branch block and ST segment elevation on an electrocardiogram (ECG). It can cause the ventricles to beat so fast that the blood is prevented from circulating efficiently in the body. When this situation occurs (called ventricular fibrillation), the individual will faint and may die in a few minutes if the heart is not reset.<ref>PMID:17224476</ref>
+
-
==Function==
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
-
[[http://www.uniprot.org/uniprot/CAC1C_HUMAN CAC1C_HUMAN]] Voltage-sensitive calcium channels (VSCC) mediate the entry of calcium ions into excitable cells and are also involved in a variety of calcium-dependent processes, including muscle contraction, hormone or neurotransmitter release, gene expression, cell motility, cell division and cell death. The isoform alpha-1C gives rise to L-type calcium currents. Long-lasting (L-type) calcium channels belong to the 'high-voltage activated' (HVA) group. They are blocked by dihydropyridines (DHP), phenylalkylamines, benzothiazepines, and by omega-agatoxin-IIIA (omega-Aga-IIIA). They are however insensitive to omega-conotoxin-GVIA (omega-CTx-GVIA) and omega-agatoxin-IVA (omega-Aga-IVA). Calcium channels containing the alpha-1C subunit play an important role in excitation-contraction coupling in the heart. The various isoforms display marked differences in the sensitivity to DHP compounds. Binding of calmodulin or CABP1 at the same regulatory sites results in an opposit effects on the channel function.<ref>PMID:8392192</ref><ref>PMID:7737988</ref><ref>PMID:9013606</ref><ref>PMID:9607315</ref><ref>PMID:12176756</ref><ref>PMID:17071743</ref>
+
</div>
-
 
+
-
==About this Structure==
+
-
[[3g43]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3G43 OCA].
+
==See Also==
==See Also==
*[[Calmodulin|Calmodulin]]
*[[Calmodulin|Calmodulin]]
*[[Ion channels|Ion channels]]
*[[Ion channels|Ion channels]]
-
 
+
== References ==
-
==Reference==
+
<references/>
-
<ref group="xtra">PMID:019279214</ref><ref group="xtra">PMID:016338416</ref><references group="xtra"/><references/>
+
__TOC__
 +
</StructureSection>
[[Category: Homo sapiens]]
[[Category: Homo sapiens]]
-
[[Category: Fallon, J L.]]
+
[[Category: Fallon, J L]]
-
[[Category: Quiocho, F A.]]
+
[[Category: Quiocho, F A]]
[[Category: Brugada syndrome]]
[[Category: Brugada syndrome]]
[[Category: Calcium channel]]
[[Category: Calcium channel]]

Revision as of 14:28, 18 December 2014

Crystal structure of the calmodulin-bound Cav1.2 C-terminal regulatory domain dimer

3g43, resolution 2.10Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools