JMS/sandbox9

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 11: Line 11:
In 2005, scientists from the Weizmann Institute reported the first crystal structure of a halotolerant enzyme, from ''D. salina'', a <scene name='JMS/sandbox9/Carbonic_anhydrase/1'>carbonic anhydrase</scene> ([[1y7w]]). In 1995, they solved (together with scientists from Tel Aviv University) the first structure of a halophilic enzyme, a <scene name='Extremophile/1hlp_secondary/2'>malate/lactate dehydrogenase</scene> ([[1hlp]]) from ''Haloarcula marismortui''.
In 2005, scientists from the Weizmann Institute reported the first crystal structure of a halotolerant enzyme, from ''D. salina'', a <scene name='JMS/sandbox9/Carbonic_anhydrase/1'>carbonic anhydrase</scene> ([[1y7w]]). In 1995, they solved (together with scientists from Tel Aviv University) the first structure of a halophilic enzyme, a <scene name='Extremophile/1hlp_secondary/2'>malate/lactate dehydrogenase</scene> ([[1hlp]]) from ''Haloarcula marismortui''.
-
They conclude that a general solution for remaining soluble in salty conditions it to become "anion-like" through increasing the negative charge surface density. Too little negative charge and the enzyme can only tolerate low salt conditions, too much negative charge and the enzyme can only stand high salt conditions, but the "right" amount of negative charge enables an enzyme to remain soluble in both low and high salt conditoins.
+
They conclude that a general solution for remaining soluble in salty conditions is to become "anion-like" through increasing the negative charge surface density. Too little negative charge and the enzyme can only tolerate low salt conditions, too much negative charge and the enzyme can only stand high salt conditions, but the "right" amount of negative charge enables an enzyme to remain soluble in both low and high salt conditoins.
In the list below, notice how the negative surface charge density is lowest for the mesophilic, highest for the halophilic, and intermediate for the halotolerant enzyme. The negative, positive, and neutral amino acids are colored red, blue and white, respectively:
In the list below, notice how the negative surface charge density is lowest for the mesophilic, highest for the halophilic, and intermediate for the halotolerant enzyme. The negative, positive, and neutral amino acids are colored red, blue and white, respectively:

Revision as of 16:37, 20 May 2013

halophilic enzyme (PDB entry 1hlp)

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Joseph M. Steinberger

Personal tools