4bv6
From Proteopedia
(Difference between revisions)
m (Protected "4bv6" [edit=sysop:move=sysop]) |
|||
Line 1: | Line 1: | ||
- | ''' | + | ==Refined crystal structure of the human Apoptosis inducing factor== |
+ | <StructureSection load='4bv6' size='340' side='right' caption='[[4bv6]], [[Resolution|resolution]] 1.80Å' scene=''> | ||
+ | == Structural highlights == | ||
+ | <table><tr><td colspan='2'>[[4bv6]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4BV6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4BV6 FirstGlance]. <br> | ||
+ | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | ||
+ | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1m6i|1m6i]], [[4bur|4bur]]</td></tr> | ||
+ | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4bv6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4bv6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4bv6 RCSB], [http://www.ebi.ac.uk/pdbsum/4bv6 PDBsum]</span></td></tr> | ||
+ | </table> | ||
+ | == Disease == | ||
+ | [[http://www.uniprot.org/uniprot/AIFM1_HUMAN AIFM1_HUMAN]] Defects in AIFM1 are the cause of combined oxidative phosphorylation deficiency type 6 (COXPD6) [MIM:[http://omim.org/entry/300816 300816]]. It is a mitochondrial disease resulting in a neurodegenerative disorder characterized by psychomotor delay, hypotonia, areflexia, muscle weakness and wasting.<ref>PMID:20362274</ref> <ref>PMID:22019070</ref> | ||
+ | == Function == | ||
+ | [[http://www.uniprot.org/uniprot/AIFM1_HUMAN AIFM1_HUMAN]] Probable oxidoreductase that has a dual role in controlling cellular life and death; during apoptosis, it is translocated from the mitochondria to the nucleus to function as a proapoptotic factor in a caspase-independent pathway, while in normal mitochondria, it functions as an antiapoptotic factor via its oxidoreductase activity. The soluble form (AIFsol) found in the nucleus induces 'parthanatos' i.e. caspase-independent fragmentation of chromosomal DNA. Interacts with EIF3G,and thereby inhibits the EIF3 machinery and protein synthesis, and activates casapse-7 to amplify apoptosis. Plays a critical role in caspase-independent, pyknotic cell death in hydrogen peroxide-exposed cells. Binds to DNA in a sequence-independent manner.<ref>PMID:17094969</ref> <ref>PMID:19418225</ref> <ref>PMID:20362274</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The execution of apoptosis or programmed cell death comprises both caspase-dependent and caspase-independent processes. Apoptosis inducing factor (AIF) was identified as a major player in caspase-independent cell death. It induces chromatin condensation and initial DNA cleavage via an unknown molecular mechanism. Here we report the crystal structure of human AIF at 1.8 A resolution. The structure reveals the presence of a strong positive electrostatic potential at the AIF surface, although the calculated isoelectric point for the entire protein is neutral. We show that recombinant AIF interacts with DNA in a sequence-independent manner. In addition, in cells treated with an apoptotic stimulus, endogenous AIF becomes co-localized with DNA at an early stage of nuclear morphological changes. Structure-based mutagenesis shows that DNA-binding defective mutants of AIF fail to induce cell death while retaining nuclear translocation. The potential DNA-binding site identified from mutagenesis also coincides with computational docking of a DNA duplex. These observations suggest that AIF-induced nuclear apoptosis requires a direct interaction with DNA. | ||
- | + | DNA binding is required for the apoptogenic action of apoptosis inducing factor.,Ye H, Cande C, Stephanou NC, Jiang S, Gurbuxani S, Larochette N, Daugas E, Garrido C, Kroemer G, Wu H Nat Struct Biol. 2002 Sep;9(9):680-4. PMID:12198487<ref>PMID:12198487</ref> | |
- | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
- | + | </div> | |
- | + | == References == | |
+ | <references/> | ||
+ | __TOC__ | ||
+ | </StructureSection> | ||
+ | [[Category: Ferreira, P]] | ||
+ | [[Category: Herguedas, B]] | ||
+ | [[Category: Hermoso, J A]] | ||
+ | [[Category: Martinez-Julvez, M]] | ||
+ | [[Category: Medina, M]] | ||
+ | [[Category: Villanueva, R]] | ||
+ | [[Category: Apoptosis]] | ||
+ | [[Category: Dna binding]] | ||
+ | [[Category: Nuclear chromatinolysis]] | ||
+ | [[Category: Oxidoreductase]] |
Revision as of 09:47, 21 December 2014
Refined crystal structure of the human Apoptosis inducing factor
|