4byl
From Proteopedia
| Line 1: | Line 1: | ||
| - | + | {{STRUCTURE_4byl| PDB=4byl | SCENE= }} | |
| + | ===Cryo-EM reconstruction of the 80S-eIF5B-Met-itRNAMet Eukaryotic Translation Initiation Complex=== | ||
| + | {{ABSTRACT_PUBMED_24200810}} | ||
| - | + | ==Function== | |
| + | [[http://www.uniprot.org/uniprot/RS2_YEAST RS2_YEAST]] Important in the assembly and function of the 40S ribosomal subunit. Mutations in this protein affects the control of translational fidelity. Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> [[http://www.uniprot.org/uniprot/GBLP_YEAST GBLP_YEAST]] Located at the head of the 40S ribosomal subunit in the vicinity of the mRNA exit channel, it serves as a scaffold protein that can recruit other proteins to the ribosome. Involved in the negative regulation of translation of a specific subset of proteins.<ref>PMID:15340087</ref> [[http://www.uniprot.org/uniprot/RS9A_YEAST RS9A_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> [[http://www.uniprot.org/uniprot/RS21A_YEAST RS21A_YEAST]] Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Has a physiological role leading to 18S rRNA stability.<ref>PMID:14627813</ref> [[http://www.uniprot.org/uniprot/RS14A_YEAST RS14A_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> [[http://www.uniprot.org/uniprot/RS7A_YEAST RS7A_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> [[http://www.uniprot.org/uniprot/RS27A_YEAST RS27A_YEAST]] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, and DNA-damage responses. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling (By similarity). 40S ribosomal protein S31 is a component of the 40S subunit of the ribosome (By similarity). [[http://www.uniprot.org/uniprot/RS18A_YEAST RS18A_YEAST]] Located at the top of the head of the 40S subunit, it contacts several helices of the 18S rRNA (By similarity).[HAMAP-Rule:MF_01315] [[http://www.uniprot.org/uniprot/RS19A_YEAST RS19A_YEAST]] Required for proper maturation of the small (40S) ribosomal subunit. Binds to 40s pre-ribosomal particles, probably required after association of NOC4 but before association of ENP1, TSR1 and RIO2 with 20/21S pre-rRNA.<ref>PMID:16159874</ref> <ref>PMID:17726054</ref> [[http://www.uniprot.org/uniprot/RSSA1_YEAST RSSA1_YEAST]] Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits.<ref>PMID:9973221</ref> <ref>PMID:14627813</ref> [[http://www.uniprot.org/uniprot/RS6A_YEAST RS6A_YEAST]] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.<ref>PMID:15590835</ref> [[http://www.uniprot.org/uniprot/STM1_YEAST STM1_YEAST]] Binds specifically G4 quadruplex (these are four-stranded right-handed helices, stabilized by guanine base quartets) and purine motif triplex (characterized by a third, antiparallel purine-rich DNA strand located within the major groove of a homopurine stretch of duplex DNA) nucleic acid structures. These structures may be present at telomeres or in rRNAs. Acts with CDC13 to control telomere length homeostasis. Involved in the control of the apoptosis-like cell death.<ref>PMID:15044472</ref> [[http://www.uniprot.org/uniprot/RS15_YEAST RS15_YEAST]] Involved in the nuclear export of the small ribosomal subunit. Has a role in the late stage of the assembly of pre-40S particles within the nucleus and controls their export to the cytoplasm.<ref>PMID:15167894</ref> | ||
| - | + | ==About this Structure== | |
| + | [[4byl]] is a 33 chain structure with sequence from [http://en.wikipedia.org/wiki/Saccharomyces_cerevisiae Saccharomyces cerevisiae]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4BYL OCA]. | ||
| - | + | ==Reference== | |
| + | <ref group="xtra">PMID:024200810</ref><references group="xtra"/><references/> | ||
| + | [[Category: Saccharomyces cerevisiae]] | ||
| + | [[Category: Bai, X C.]] | ||
| + | [[Category: Fernandez, I S.]] | ||
| + | [[Category: Hussain, T.]] | ||
| + | [[Category: Kelley, A C.]] | ||
| + | [[Category: Lorsch, J R.]] | ||
| + | [[Category: Ramakrishnan, V.]] | ||
| + | [[Category: Scheres, S H.W.]] | ||
| + | [[Category: Initiator factor eif5b]] | ||
| + | [[Category: Ribosome]] | ||
| + | [[Category: Ribosome initiation complex]] | ||
| + | [[Category: Single particle analysis]] | ||
Revision as of 13:28, 20 November 2013
Contents |
Cryo-EM reconstruction of the 80S-eIF5B-Met-itRNAMet Eukaryotic Translation Initiation Complex
Template:ABSTRACT PUBMED 24200810
Function
[RS2_YEAST] Important in the assembly and function of the 40S ribosomal subunit. Mutations in this protein affects the control of translational fidelity. Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.[1] [GBLP_YEAST] Located at the head of the 40S ribosomal subunit in the vicinity of the mRNA exit channel, it serves as a scaffold protein that can recruit other proteins to the ribosome. Involved in the negative regulation of translation of a specific subset of proteins.[2] [RS9A_YEAST] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.[3] [RS21A_YEAST] Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits. Has a physiological role leading to 18S rRNA stability.[4] [RS14A_YEAST] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.[5] [RS7A_YEAST] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.[6] [RS27A_YEAST] Ubiquitin exists either covalently attached to another protein, or free (unanchored). When covalently bound, it is conjugated to target proteins via an isopeptide bond either as a monomer (monoubiquitin), a polymer linked via different Lys residues of the ubiquitin (polyubiquitin chains) or a linear polymer linked via the initiator Met of the ubiquitin (linear polyubiquitin chains). Polyubiquitin chains, when attached to a target protein, have different functions depending on the Lys residue of the ubiquitin that is linked: Lys-6-linked may be involved in DNA repair; Lys-11-linked is involved in ERAD (endoplasmic reticulum-associated degradation) and in cell-cycle regulation; Lys-29-linked is involved in lysosomal degradation; Lys-33-linked is involved in kinase modification; Lys-48-linked is involved in protein degradation via the proteasome; Lys-63-linked is involved in endocytosis, and DNA-damage responses. Linear polymer chains formed via attachment by the initiator Met lead to cell signaling. Ubiquitin is usually conjugated to Lys residues of target proteins, however, in rare cases, conjugation to Cys or Ser residues has been observed. When polyubiquitin is free (unanchored-polyubiquitin), it also has distinct roles, such as in activation of protein kinases, and in signaling (By similarity). 40S ribosomal protein S31 is a component of the 40S subunit of the ribosome (By similarity). [RS18A_YEAST] Located at the top of the head of the 40S subunit, it contacts several helices of the 18S rRNA (By similarity).[HAMAP-Rule:MF_01315] [RS19A_YEAST] Required for proper maturation of the small (40S) ribosomal subunit. Binds to 40s pre-ribosomal particles, probably required after association of NOC4 but before association of ENP1, TSR1 and RIO2 with 20/21S pre-rRNA.[7] [8] [RSSA1_YEAST] Required for the assembly and/or stability of the 40S ribosomal subunit. Required for the processing of the 20S rRNA-precursor to mature 18S rRNA in a late step of the maturation of 40S ribosomal subunits.[9] [10] [RS6A_YEAST] Involved in nucleolar processing of pre-18S ribosomal RNA and ribosome assembly.[11] [STM1_YEAST] Binds specifically G4 quadruplex (these are four-stranded right-handed helices, stabilized by guanine base quartets) and purine motif triplex (characterized by a third, antiparallel purine-rich DNA strand located within the major groove of a homopurine stretch of duplex DNA) nucleic acid structures. These structures may be present at telomeres or in rRNAs. Acts with CDC13 to control telomere length homeostasis. Involved in the control of the apoptosis-like cell death.[12] [RS15_YEAST] Involved in the nuclear export of the small ribosomal subunit. Has a role in the late stage of the assembly of pre-40S particles within the nucleus and controls their export to the cytoplasm.[13]
About this Structure
4byl is a 33 chain structure with sequence from Saccharomyces cerevisiae. Full crystallographic information is available from OCA.
Reference
- Fernandez IS, Bai XC, Hussain T, Kelley AC, Lorsch JR, Ramakrishnan V, Scheres SH. Molecular architecture of a eukaryotic translational initiation complex. Science. 2013 Nov 15;342(6160):1240585. doi: 10.1126/science.1240585. Epub 2013, Nov 7. PMID:24200810 doi:http://dx.doi.org/10.1126/science.1240585
- ↑ Bernstein KA, Gallagher JE, Mitchell BM, Granneman S, Baserga SJ. The small-subunit processome is a ribosome assembly intermediate. Eukaryot Cell. 2004 Dec;3(6):1619-26. PMID:15590835 doi:http://dx.doi.org/10.1128/EC.3.6.1619-1626.2004
- ↑ Gerbasi VR, Weaver CM, Hill S, Friedman DB, Link AJ. Yeast Asc1p and mammalian RACK1 are functionally orthologous core 40S ribosomal proteins that repress gene expression. Mol Cell Biol. 2004 Sep;24(18):8276-87. PMID:15340087 doi:10.1128/MCB.24.18.8276-8287.2004
- ↑ Bernstein KA, Gallagher JE, Mitchell BM, Granneman S, Baserga SJ. The small-subunit processome is a ribosome assembly intermediate. Eukaryot Cell. 2004 Dec;3(6):1619-26. PMID:15590835 doi:http://dx.doi.org/10.1128/EC.3.6.1619-1626.2004
- ↑ Tabb-Massey A, Caffrey JM, Logsden P, Taylor S, Trent JO, Ellis SR. Ribosomal proteins Rps0 and Rps21 of Saccharomyces cerevisiae have overlapping functions in the maturation of the 3' end of 18S rRNA. Nucleic Acids Res. 2003 Dec 1;31(23):6798-805. PMID:14627813
- ↑ Bernstein KA, Gallagher JE, Mitchell BM, Granneman S, Baserga SJ. The small-subunit processome is a ribosome assembly intermediate. Eukaryot Cell. 2004 Dec;3(6):1619-26. PMID:15590835 doi:http://dx.doi.org/10.1128/EC.3.6.1619-1626.2004
- ↑ Bernstein KA, Gallagher JE, Mitchell BM, Granneman S, Baserga SJ. The small-subunit processome is a ribosome assembly intermediate. Eukaryot Cell. 2004 Dec;3(6):1619-26. PMID:15590835 doi:http://dx.doi.org/10.1128/EC.3.6.1619-1626.2004
- ↑ Leger-Silvestre I, Caffrey JM, Dawaliby R, Alvarez-Arias DA, Gas N, Bertolone SJ, Gleizes PE, Ellis SR. Specific Role for Yeast Homologs of the Diamond Blackfan Anemia-associated Rps19 Protein in Ribosome Synthesis. J Biol Chem. 2005 Nov 18;280(46):38177-85. Epub 2005 Sep 12. PMID:16159874 doi:http://dx.doi.org/10.1074/jbc.M506916200
- ↑ Gregory LA, Aguissa-Toure AH, Pinaud N, Legrand P, Gleizes PE, Fribourg S. Molecular basis of Diamond-Blackfan anemia: structure and function analysis of RPS19. Nucleic Acids Res. 2007;35(17):5913-21. Epub 2007 Aug 28. PMID:17726054 doi:10.1093/nar/gkm626
- ↑ Ford CL, Randal-Whitis L, Ellis SR. Yeast proteins related to the p40/laminin receptor precursor are required for 20S ribosomal RNA processing and the maturation of 40S ribosomal subunits. Cancer Res. 1999 Feb 1;59(3):704-10. PMID:9973221
- ↑ Tabb-Massey A, Caffrey JM, Logsden P, Taylor S, Trent JO, Ellis SR. Ribosomal proteins Rps0 and Rps21 of Saccharomyces cerevisiae have overlapping functions in the maturation of the 3' end of 18S rRNA. Nucleic Acids Res. 2003 Dec 1;31(23):6798-805. PMID:14627813
- ↑ Bernstein KA, Gallagher JE, Mitchell BM, Granneman S, Baserga SJ. The small-subunit processome is a ribosome assembly intermediate. Eukaryot Cell. 2004 Dec;3(6):1619-26. PMID:15590835 doi:http://dx.doi.org/10.1128/EC.3.6.1619-1626.2004
- ↑ Van Dyke MW, Nelson LD, Weilbaecher RG, Mehta DV. Stm1p, a G4 quadruplex and purine motif triplex nucleic acid-binding protein, interacts with ribosomes and subtelomeric Y' DNA in Saccharomyces cerevisiae. J Biol Chem. 2004 Jun 4;279(23):24323-33. Epub 2004 Mar 23. PMID:15044472 doi:http://dx.doi.org/10.1074/jbc.M401981200
- ↑ Leger-Silvestre I, Milkereit P, Ferreira-Cerca S, Saveanu C, Rousselle JC, Choesmel V, Guinefoleau C, Gas N, Gleizes PE. The ribosomal protein Rps15p is required for nuclear exit of the 40S subunit precursors in yeast. EMBO J. 2004 Jun 16;23(12):2336-47. Epub 2004 May 27. PMID:15167894 doi:http://dx.doi.org/10.1038/sj.emboj.7600252
