15.5kD/Snu13/L7Ae protein

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
m
m
Line 14: Line 14:
=Role in pre-ribosomal RNA processing=
=Role in pre-ribosomal RNA processing=
-
[http://en.wikipedia.org/wiki/Ribosome Ribosomes] consist of both RNA and protein, and are designated large ribonucleprotein (RNP) particles. Each ribosome contains two subunits (60S and 40S), four ribosomal RNAs (5S, 5.8S, 18S, and 25/28S rRNA), and approximately 75 associated proteins <ref name ="venema">PMID:10690410</ref>. The processing of the pre-rRNAs requires a complex set of posttranscriptional modification steps after [http://en.wikipedia.org/wiki/Transcription_(genetics) transcription] <ref name ="venema"/>. One such step involves extensive processing through pseudouridylation and 2’-O-ribose methylation at sites specified by various [http://en.wikipedia.org/wiki/Small_nucleolar_RNA s(no)RNAs] (C/D box s(no)RNAs specify 2’-O-ribose methylation and H/ACA s(no)RNA specify pseudouridylation) and associated proteins to form s(no)RNPs <ref name ="venema"/><ref name ="m-g">PMID:12810916</ref>. Specifically, the 5’ region of U3 s(no)RNA containing C’/D and B/C box pairs interacts with 5’-ETS and 17S/18S areas of the pre-rRNA<ref name ="m-g"/>. U3 also binds a set of proteins to form the U3 s(no)RNP complex <ref name ="gagnon"/>.
+
[[Ribosomes]] consist of both RNA and protein, and are designated large ribonucleprotein (RNP) particles. Each ribosome contains two subunits (60S and 40S), four ribosomal RNAs (5S, 5.8S, 18S, and 25/28S rRNA), and approximately 75 associated proteins <ref name ="venema">PMID:10690410</ref>. The processing of the pre-rRNAs requires a complex set of posttranscriptional modification steps after [http://en.wikipedia.org/wiki/Transcription_(genetics) transcription] <ref name ="venema"/>. One such step involves extensive processing through pseudouridylation and 2’-O-ribose methylation at sites specified by various [http://en.wikipedia.org/wiki/Small_nucleolar_RNA s(no)RNAs] (C/D box s(no)RNAs specify 2’-O-ribose methylation and H/ACA s(no)RNA specify pseudouridylation) and associated proteins to form s(no)RNPs <ref name ="venema"/><ref name ="m-g">PMID:12810916</ref>. Specifically, the 5’ region of U3 s(no)RNA containing C’/D and B/C box pairs interacts with 5’-ETS and 17S/18S areas of the pre-rRNA<ref name ="m-g"/>. U3 also binds a set of proteins to form the U3 s(no)RNP complex <ref name ="gagnon"/>.
Snu13p/15.5kD/L7Ae interacts with U3 s(no)RNA through a kink-turn RNA motif <ref name ="venema"/>. The protein initiates box C/D assembly by binding the kink-turn of the C/D RNAs <ref name ="gagnon"/>. Once the s(no)RNP is fully assembled the RNA regions bind to complementary regions in target pre-rRNA. This is followed by catalysis of the methyl transferase reaction by the associated proteins <ref name ="gagnon"/>.
Snu13p/15.5kD/L7Ae interacts with U3 s(no)RNA through a kink-turn RNA motif <ref name ="venema"/>. The protein initiates box C/D assembly by binding the kink-turn of the C/D RNAs <ref name ="gagnon"/>. Once the s(no)RNP is fully assembled the RNA regions bind to complementary regions in target pre-rRNA. This is followed by catalysis of the methyl transferase reaction by the associated proteins <ref name ="gagnon"/>.

Revision as of 00:57, 17 October 2013

Structure of 15.5kD bound with a U4 snRNP fragment (1e7k)

Drag the structure with the mouse to rotate

Additional Resources

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 PMCID:PMC2802039
  2. 2.0 2.1 2.2 Dobbyn HC, McEwan PA, Krause A, Novak-Frazer L, Bella J, O'Keefe RT. Analysis of pre-mRNA and pre-rRNA processing factor Snu13p structure and mutants. Biochem Biophys Res Commun. 2007 Sep 7;360(4):857-62. Epub 2007 Jul 9. PMID:17631273 doi:10.1016/j.bbrc.2007.06.163
  3. 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 Oruganti S, Zhang Y, Li H. Structural comparison of yeast snoRNP and spliceosomal protein Snu13p with its homologs. Biochem Biophys Res Commun. 2005 Jul 29;333(2):550-4. PMID:15963469 doi:10.1016/j.bbrc.2005.05.141
  4. 4.0 4.1 4.2 4.3 Venema J, Tollervey D. Ribosome synthesis in Saccharomyces cerevisiae. Annu Rev Genet. 1999;33:261-311. PMID:10690410 doi:10.1146/annurev.genet.33.1.261
  5. 5.0 5.1 5.2 5.3 5.4 Marmier-Gourrier N, Clery A, Senty-Segault V, Charpentier B, Schlotter F, Leclerc F, Fournier R, Branlant C. A structural, phylogenetic, and functional study of 15.5-kD/Snu13 protein binding on U3 small nucleolar RNA. RNA. 2003 Jul;9(7):821-38. PMID:12810916
  6. 6.0 6.1 6.2 6.3 6.4 6.5 van der Feltz C, Anthony K, Brilot A, Pomeranz Krummel DA. Architecture of the Spliceosome. Biochemistry. 2012 Apr 10. PMID:22471593 doi:10.1021/bi201215r
  7. 7.0 7.1 7.2 7.3 7.4 7.5 Sperling J, Azubel M, Sperling R. Structure and function of the Pre-mRNA splicing machine. Structure. 2008 Nov 12;16(11):1605-15. PMID:19000813 doi:10.1016/j.str.2008.08.011
  8. Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
  9. Zhang L, Xu T, Maeder C, Bud LO, Shanks J, Nix J, Guthrie C, Pleiss JA, Zhao R. Structural evidence for consecutive Hel308-like modules in the spliceosomal ATPase Brr2. Nat Struct Mol Biol. 2009 Jul;16(7):731-9. Epub 2009 Jun 14. PMID:19525970 doi:10.1038/nsmb.1625
  10. 10.00 10.01 10.02 10.03 10.04 10.05 10.06 10.07 10.08 10.09 10.10 10.11 Vidovic I, Nottrott S, Hartmuth K, Luhrmann R, Ficner R. Crystal structure of the spliceosomal 15.5kD protein bound to a U4 snRNA fragment. Mol Cell. 2000 Dec;6(6):1331-42. PMID:11163207

Proteopedia Page Contributors and Editors (what is this?)

Wayne Decatur, Kelly Hrywkiw, Alexander Berchansky

Personal tools