Amylase

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
<StructureSection load='1hvx' size='400' side='right' scene='Sandbox_182/Alpha-amylase/1' caption=''>
+
<StructureSection load='1hvx' size='400' side='right' scene='Sandbox_182/Alpha-amylase/1' caption='Amylase complex with Ca+2 and Na+ ions (PDB code [[1hvx]])'>
=Introduction=
=Introduction=
Discovered and isolated by [http://en.wikipedia.org/wiki/Anselme_Payen Anselme Payen] in 1833, amylase was the first enzyme to be discovered<ref name="book">Yamamoto T.1988. Handbook of Amylases and Related Enzymes: Their Sources, Isolation Methods, Properties and Applications. Osaka Japan: Pergamon Press</ref>. Amylases are hydrolases, acting on α-1,4-glycosidic bonds<ref name="Path">PMID:9541387</ref>. They can be further subdivided into α,β and γ amylases<ref name="book"/>.'''α-Amylase''' (AAM) is an enzyme that acts as a catalyst for the hydrolysis of alpha-linked polysaccharides into α-anomeric products<ref name="Main">PMID:11226887</ref>. The enzyme can be derived from a variety of sources, each with different characteristics. α-Amylase found within the human body serves as the enzyme active in pancreatic juice and salvia<ref name="Path"/>. α-Amylase is not only essential in human physiology but has a number of important biotechnological functions in various processing industries. Beta/alpha amylase (BAAM) is a precursor protein which is cleaved to form the beta-amylase and alpha-amylase after secretion.
Discovered and isolated by [http://en.wikipedia.org/wiki/Anselme_Payen Anselme Payen] in 1833, amylase was the first enzyme to be discovered<ref name="book">Yamamoto T.1988. Handbook of Amylases and Related Enzymes: Their Sources, Isolation Methods, Properties and Applications. Osaka Japan: Pergamon Press</ref>. Amylases are hydrolases, acting on α-1,4-glycosidic bonds<ref name="Path">PMID:9541387</ref>. They can be further subdivided into α,β and γ amylases<ref name="book"/>.'''α-Amylase''' (AAM) is an enzyme that acts as a catalyst for the hydrolysis of alpha-linked polysaccharides into α-anomeric products<ref name="Main">PMID:11226887</ref>. The enzyme can be derived from a variety of sources, each with different characteristics. α-Amylase found within the human body serves as the enzyme active in pancreatic juice and salvia<ref name="Path"/>. α-Amylase is not only essential in human physiology but has a number of important biotechnological functions in various processing industries. Beta/alpha amylase (BAAM) is a precursor protein which is cleaved to form the beta-amylase and alpha-amylase after secretion.

Revision as of 12:02, 20 January 2014

Amylase complex with Ca+2 and Na+ ions (PDB code 1hvx)

Drag the structure with the mouse to rotate


3D structures of Amylase

Updated on 20-January-2014

α-amylase

3ij7, 1xv8, 1c8q, 1bsi, 1smd, 1hny – hAAM – human

1xgz, 1q4n, 1kb3, 1kbb, 1kbk, 1kgu, 1kgw, 1kgx, 1jxj, 1jxk, 2cpu - hAAM (mutant)

3n8t – TkAAM – Thermococcus kodakarensis

3k8k – BtAAM – Bacterioides thetaiotaomicron

3kwx, 2guy – AoAAM – Aspergilluys oryzae

2wpg – AAM – Xanthomonas campestris

2wc7, 2wcs, 2wkg – AAM catalytic region – Cyanobacterium

3bh4 – BaAAM – Bacillus amyloliquefaciens

1e3x, 1e43 – BaAAM chimera

1ht6, 1amy - bAAM – barley

3bsg – bAAM (mutant)

3dhu – AAM – Lactobacillus plantarum

3dc0 – AAM – Bacillus KR8104

3bcf, 1wza – HoAAM – Halothermothrix orenii

2die, 1wp6 – AAM alkaline – Bacillus sp.

1ud2, 1ud4, 1ud5, 1ud6, 1ud8 - AAM – Bacillus sp. KSM-K38

1ud3 – AAM (mutant) – Bacillus sp. KSM-K38

2gjr – BhAAM – Bacillus halmapalus

2b5d – AAM – Thermotoga maritima

2c3g, 2c3v – BhaloAAM – Bacillus halodurans

1ji1, 1ji2, 1bvz - TvAAM – Thermoactinomyces vulgaris

1wzk, 1wzl, 1wzm, 1izj, 1izk, 1jf5, 1jf6 – TvAAM (mutant)

1mwo, 1mxd – PwAAM – Pyrococcus woesei

1ob0, 1bli - BlAAM (mutant) – Bacillus licheniformis
1vjs – BlAAM precursor
1bpl – BlAAM
1b0i, 1aqm, 1aqh – PhAAM - Pseudoalteromonas haloplanktis

1jd7, 1jd9 - PhAAM (mutant)

1g5a – NpAAM – Neisseria polysaccharea

1hvx - BaAAM – Bacillus stearothermophilus

1qho – GsAAM – Geobacillus stearothermophilus

1jae – TmAAM – Tenebrio molitor

1pif – pAAM – pig

6taa, 2aaa - AoAAM
4aee – AAM catalytic domain – Staphylothermus marinus
3ren – AAM – Clostridium perfringens
3vm5 – AAM – Oryzias latipes
3vm7 – AAM – Malbranchea cinnamomea
4gkl – AAM – Thermotoga neapolitana

AAM binary complexes

1xd0, 1xd1, 1cpu, 1jfh - hAAM + saccharide
1b2y, 1xcw, 1xcx - hAAM + acarbose
3blk, 3blp, 1z32, 1nm9, 1mfu, 1mfv, 3cpu - hAAM (mutant) + saccharide
3dhp, 1xh0, 1xh2 - hAAM (mutant) + acarbose
3ij8, 3ij9 – hAAM catalytic intermediate

2qmk, 3bai – hAAM + NO2

3baw – hAAM + N3

3bax - hAAM (mutant) + N3

3bak – hAAM (mutant) + NO3

1xh1 - hAAM (mutant) + Cl

2qv4, 3baj, 3bay - hAAM + acarbose + NO2

3old, 3ole, 3olg, 3oli – hAAM + statin

1u2y, 1u30, 1u33 – hAAM + inhibitor
4gqq – hAAM + ethyl caffeate
4gqr – hAAM + myricetin
3n92, 3n98 – TkAAM + saccharide
3l2l, 3l2m, 1vah, 1wo2, 1ua3, 1pig, 1ppi - pAAM + saccharide
1hx0 – pAAM + acarbose
1kxq, 1kxt, 1kxv – pAAM + antibody VHH fragment

1bvn, 1dhk – pAAM + protein inhibitor

1ose – pAAM + acarbose
3k8l - BtAAM (mutant) + saccharide
3k8m - BtAAM + acarbose
2d2o, 1jl8, 1jib - TvAAM + saccharide
3a6o – TvAAM + acarbose
2d0f, 2d0g, 2d0h, 1vb9, 1vfm, 1vfo, 1vfu, 1uh2, 1uh4 - TvAAM (mutant) + saccharide
1uh3 - TvAAM (mutant) + acarbose
1ava – bAAM + protein inhibitor

1bg9, 1rpk - bAAM + acarbose
1p6w – bAAM + substrate analog

1rp8, 1b1y, 1rp9 - bAAM (mutant) + saccharide
3bsh, 2qpu, 2qps - bAAM (mutant) + acarbose
3bcd - HoAAM + saccharide
3bc9 - HoAAM + acarbose
2gjp, 1w9x - BhAAM + saccharide
2gvy - AoAAM + saccharide
1zs2, 1s46, 1mvy, 1mw0, 1mw1, 1mw2, 1mw3 - NpAAM (mutant) + saccharide
1bag - BsAAM + saccharide – Bacillus subtilis

1ua7 – BsAAM + acarbose
2d3l, 2d3n - BacAAM + saccharide – Bacillus

2c3h, 2c3w, 2c3x - BhaloAAM + saccharide
1mxg - PwAAM + acarbose
1g9h, 1g94 - PhAAM + saccharide
1kxh - PhAAM (mutant) + acarbose
1l0p – PhAAM + NO3

1e40 – BaAAM chimera + saccharide
1e3z - BaAAM chimera + acarbose
1fa2 - AAM + saccharide – Sweet potato

1qhp - GsAAM + saccharide
4e2o - GsAAM + acarbose
1clv, 1viw, 1tmq – TmAAM + protein inhibitor

1gah, 1gai – AaAAM + acarbose – Aspergillus awamori

3gly, 1agm, 1glm – AaAAM + saccharide

Pullulanase α-amylase

2wan – AAM – Bacillus acidopullululyticus

2fgz – KaAAM – Klebsiella aerogenes

2e8y - BsAAM
1ji2 - TvAAM
1jl5, 1jf6, 1wzk, 1wzl, 1wzm - TvAAM (mutant)

Pullulanase α-amylase binary complexes

2fh6, 2fh8, 2fhb, 2fhc, 2fhf - KaAAM + saccharide
3fax - AAM + saccharide – Streptococcus agalactiae

2e8z, 2e9b - BsAAM + saccharide
2d2o - TvAAM + saccharide
1g1y, 1jib, 1jl8, 1vfm, 1vfo, 1vfu, 1vb9 - TvAAM (mutant) + saccharide
3a6o – TvAAM + acarbose

Neopullulanase α-amylase

4aef – AAM – Pyrococcus furiosus

β-amylase

2xfr – bBAM

1wdp – sBAM – soybean

2dqx, 1uko, 1ukp – sBAM (mutant)

1vem, 5bca, 1cqy, 1b90 – BcBAM – Bacillus cereus

1ven - BcBAM (mutant)
1fa2 - AAM + saccharide – Sweet potato

β-amylase binary complexes

2xff – bBAM + acarbose
2xfy, 2xg9, 2xgb, 2xgi – bBAM + inhibitor

1wdq, 1wdr, 1wds, 1v3h, 1v3i, 1q6d, 1q6e, 1q6f, 1q6g - sBAM (mutant) + saccharide
1q6c, 1bfn, 1bya, 1byb, 1byc, 1byd, 1btc - sBAM + saccharide
1j0y, 1j0z, 1j10, 1j11, 1j12, 1j18, 1b9z - BcBAM + saccharide
1veo, 1vep, 1itc - BcBAM (mutant) + saccharide
1b1y - AAM (mutant) + saccharide – Hordeum vulgare

γ-amylase

1lf6 – TtGAM – Thermoanaerobacterium thermosaccharolyticum

1lf9 - TtGAM + acarbose

β/α-amylase

2laa, 2lab – PpBAAM – Paenibacillus polymyxa - NMR
[[3voc – PpBAAM

Maltohexaose-producing amylase

1wp6 - BacMAM 1wpc – BacMAM + saccharide

Maltogenic amylase

1gvi, 1sma – MAM – Thermus sp.

Taka amylase

2taa – AoTAM

7taa – AoTAM + acarbose

References

  1. 1.0 1.1 1.2 1.3 1.4 1.5 Yamamoto T.1988. Handbook of Amylases and Related Enzymes: Their Sources, Isolation Methods, Properties and Applications. Osaka Japan: Pergamon Press
  2. 2.0 2.1 Aghajari N, Feller G, Gerday C, Haser R. Crystal structures of the psychrophilic alpha-amylase from Alteromonas haloplanctis in its native form and complexed with an inhibitor. Protein Sci. 1998 Mar;7(3):564-72. PMID:9541387
  3. 3.0 3.1 3.2 Suvd D, Fujimoto Z, Takase K, Matsumura M, Mizuno H. Crystal structure of Bacillus stearothermophilus alpha-amylase: possible factors determining the thermostability. J Biochem. 2001 Mar;129(3):461-8. PMID:11226887
  4. 4.0 4.1 4.2 Aghajari N, Feller G, Gerday C, Haser R. Structural basis of alpha-amylase activation by chloride. Protein Sci. 2002 Jun;11(6):1435-41. PMID:12021442
  5. Maurus R, Begum A, Williams LK, Fredriksen JR, Zhang R, Withers SG, Brayer GD. Alternative catalytic anions differentially modulate human alpha-amylase activity and specificity(,). Biochemistry. 2008 Mar 18;47(11):3332-44. Epub 2008 Feb 20. PMID:18284212 doi:10.1021/bi701652t
  6. 6.0 6.1 Maurus R, Begum A, Williams LK, Fredriksen JR, Zhang R, Withers SG, Brayer GD. Alternative catalytic anions differentially modulate human alpha-amylase activity and specificity(,). Biochemistry. 2008 Mar 18;47(11):3332-44. Epub 2008 Feb 20. PMID:18284212 doi:10.1021/bi701652t
  7. 7.0 7.1 7.2 7.3 Kuriki T, Imanaka T. The concept of the alpha-amylase family: structural similarity and common catalytic mechanism. J Biosci Bioeng. 1999;87(5):557-65. PMID:16232518
  8. 8.0 8.1 PPMID: 17713601
  9. Franco OL, Rigden DJ, Melo FR, Grossi-De-Sa MF. Plant alpha-amylase inhibitors and their interaction with insect alpha-amylases. Eur J Biochem. 2002 Jan;269(2):397-412. PMID:11856298
  10. Yang RW, Shao ZX, Chen YY, Yin Z, Wang WJ. Lipase and pancreatic amylase activities in diagnosis of acute pancreatitis in patients with hyperamylasemia. Hepatobiliary Pancreat Dis Int. 2005 Nov;4(4):600-3. PMID:16286272
Personal tools
In other languages