1uir
From Proteopedia
(Difference between revisions)
| Line 1: | Line 1: | ||
| - | + | ==Crystal Structure of Polyamine Aminopropyltransfease from Thermus thermophilus== | |
| - | === | + | <StructureSection load='1uir' size='340' side='right' caption='[[1uir]], [[Resolution|resolution]] 2.00Å' scene=''> |
| - | + | == Structural highlights == | |
| + | <table><tr><td colspan='2'>[[1uir]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"flavobacterium_thermophilum"_yoshida_and_oshima_1971 "flavobacterium thermophilum" yoshida and oshima 1971]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1UIR OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1UIR FirstGlance]. <br> | ||
| + | </td></tr><tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1inl|1inl]], [[1iy9|1iy9]], [[1jq3|1jq3]], [[1mjf|1mjf]]</td></tr> | ||
| + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1uir FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1uir OCA], [http://www.rcsb.org/pdb/explore.do?structureId=1uir RCSB], [http://www.ebi.ac.uk/pdbsum/1uir PDBsum], [http://www.topsan.org/Proteins/RSGI/1uir TOPSAN]</span></td></tr> | ||
| + | <table> | ||
| + | == Evolutionary Conservation == | ||
| + | [[Image:Consurf_key_small.gif|200px|right]] | ||
| + | Check<jmol> | ||
| + | <jmolCheckbox> | ||
| + | <scriptWhenChecked>select protein; define ~consurf_to_do selected; consurf_initial_scene = true; script "/wiki/ConSurf/ui/1uir_consurf.spt"</scriptWhenChecked> | ||
| + | <scriptWhenUnchecked>script /wiki/extensions/Proteopedia/spt/initialview01.spt</scriptWhenUnchecked> | ||
| + | <text>to colour the structure by Evolutionary Conservation</text> | ||
| + | </jmolCheckbox> | ||
| + | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
| + | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | To maintain functional conformations of DNA and RNA in high-temperature environments, an extremely thermophilic bacterium, Thermus thermophilus, employs a unique polyamine biosynthetic pathway and produces more than 16 types of polyamines. In the thermophile genome, only one spermidine synthase homolog (SpeE) was found and it was shown to be a key enzyme in the pathway. The catalytic assay of the purified enzyme revealed that it utilizes triamines (norspermidine and spermidine) and agmatine as acceptors in its aminopropyl transfer reaction; therefore, the enzyme was denoted as a triamine/agmatine aminopropyltransferase (TAAPT). We determined the crystal structures of the enzyme complexed with and without the aminopropyl group donor S-adenosylmethionine. Despite sequence and structural similarity with spermidine synthases from other organisms, a novel C-terminal beta-sheet and differences in the catalytic site were observed. The C-terminal module interacts with the gatekeeping loop and fixes the open conformation of the loop to recognize larger polyamine substrates such as agmatine and spermidine. Additional computational docking studies suggest that the structural differences of the catalytic site also contribute to recognition of the aminopropyl/aminobutyl or guanidium moiety of the substrates of TAAPT. These results explain in part the extraordinarily diverse polyamine spectrum found in T. thermophilus. | ||
| - | + | Crystal structures and enzymatic properties of a triamine/agmatine aminopropyltransferase from Thermus thermophilus.,Ohnuma M, Ganbe T, Terui Y, Niitsu M, Sato T, Tanaka N, Tamakoshi M, Samejima K, Kumasaka T, Oshima T J Mol Biol. 2011 May 20;408(5):971-86. Epub 2011 Mar 31. PMID:21458463<ref>PMID:21458463</ref> | |
| - | + | ||
| - | + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | |
| - | + | </div> | |
| - | + | == References == | |
| - | == | + | <references/> |
| - | + | __TOC__ | |
| + | </StructureSection> | ||
[[Category: Flavobacterium thermophilum yoshida and oshima 1971]] | [[Category: Flavobacterium thermophilum yoshida and oshima 1971]] | ||
[[Category: Ganbe, T.]] | [[Category: Ganbe, T.]] | ||
Revision as of 09:14, 3 October 2014
Crystal Structure of Polyamine Aminopropyltransfease from Thermus thermophilus
| |||||||||||
Categories: Flavobacterium thermophilum yoshida and oshima 1971 | Ganbe, T. | Kumasaka, T. | Ohnuma, M. | Oshima, T. | RSGI, RIKEN Structural Genomics/Proteomics Initiative. | Sato, T. | Tanaka, N. | Polyamine | Riken structural genomics/proteomics initiative | Rsgi | Spermidien synthase | Spermine synthase | Structural genomic | Transferase

