Sandbox Reserved 186

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 5: Line 5:
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
You may include any references to papers as in: the use of JSmol in Proteopedia <ref>DOI 10.1002/ijch.201300024</ref> or to the article describing Jmol <ref>PMID:21638687</ref> to the rescue.
-
== Function ==
+
== Overview ==
Glutathione peroxidase 1 (GPx-1) is a tetramer (23 kDa per monomer) with two units composed of dimers. GPx-1 is the most abundant member of the Glutathione peroxidase family. It is found in all cells and is located in the cytosolic and mitochondrial compartments (1). GPx-1 is a crucial anti-oxidant enzyme that catalyzes the conversion of hydrogen peroxide into water (2). Interestingly GPx-1 contains the rare amino acid selenocysteine which acts as the peroxidatic residue (2). The overall reaction that GPx-1 catalyzes is H2O2 + 2Glutathione (GSH)  2H20 + GS-SG (Figure 1). In addition to hydrogen peroxide GPx-1 can reduce other soluble hydroperoxides including lipid hydroperoxides (3). Because of its role in regulating the intracellular concentration of reactive oxygen species, GPx-1 has been found to play a role in numerous processes including cell proliferation, apoptosis, and inflammation (1). Furthermore deficiencies in GPx-1 has been linked to the development of cancers, neurodegenerative diseases, and heart disease (4).
Glutathione peroxidase 1 (GPx-1) is a tetramer (23 kDa per monomer) with two units composed of dimers. GPx-1 is the most abundant member of the Glutathione peroxidase family. It is found in all cells and is located in the cytosolic and mitochondrial compartments (1). GPx-1 is a crucial anti-oxidant enzyme that catalyzes the conversion of hydrogen peroxide into water (2). Interestingly GPx-1 contains the rare amino acid selenocysteine which acts as the peroxidatic residue (2). The overall reaction that GPx-1 catalyzes is H2O2 + 2Glutathione (GSH)  2H20 + GS-SG (Figure 1). In addition to hydrogen peroxide GPx-1 can reduce other soluble hydroperoxides including lipid hydroperoxides (3). Because of its role in regulating the intracellular concentration of reactive oxygen species, GPx-1 has been found to play a role in numerous processes including cell proliferation, apoptosis, and inflammation (1). Furthermore deficiencies in GPx-1 has been linked to the development of cancers, neurodegenerative diseases, and heart disease (4).
-
== Disease ==
+
== Secondary Structure and the Thioredoxin Like Fold ==
 +
GPx-1 consists of nine β-strand nine α-helices with four of the helices being of the 310 form. Interestingly two of the β-strands form a parallel β-sheet. Overall GPx-1 exhibits a thioredoxin like fold (Figure 2). The classic thioredoxin fold consists of a four stranded β-sheet that is surrounded by three α-helices (5). However the thioredoxin fold is commonly subject to the insertion of additional secondary structural elements between the second β-strand and the second α-helices (6). This is seen in GPx-1 as there is an addition of an α-helix and a β-strand between the second β-strand and the second α-helices (6). A similar insertion is found in peroxiredoxins, a different family of proteins which also catalyze the reduction of hydroperoxides (6).
== Relevance ==
== Relevance ==

Revision as of 00:23, 30 April 2014

This Sandbox is Reserved from 4/28/214, through 6/28/214 for use in the course "Proteins" taught by Drew Barber at the Univeristy of Vermont. This reservation includes Sandbox Reserved 186 through Sandbox Reserved 189.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

Your Heading Here (maybe something like 'Structure')

Caption for this structure

Drag the structure with the mouse to rotate

References

  1. Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
  2. Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
Personal tools