2iuk
From Proteopedia
(Difference between revisions)
Line 2: | Line 2: | ||
<StructureSection load='2iuk' size='340' side='right' caption='[[2iuk]], [[Resolution|resolution]] 2.40Å' scene=''> | <StructureSection load='2iuk' size='340' side='right' caption='[[2iuk]], [[Resolution|resolution]] 2.40Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | [[2iuk]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Glycine_max Glycine max]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2IUK OCA]. <br> | + | <table><tr><td colspan='2'>[[2iuk]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Glycine_max Glycine max]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2IUK OCA]. <br> |
- | <b>[[Ligand|Ligands:]]</b> <scene name='pdbligand=FE:FE+(III)+ION'>FE</scene><br> | + | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=FE:FE+(III)+ION'>FE</scene><br> |
- | <b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span>< | + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr> |
- | <b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2iuk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2iuk OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2iuk RCSB], [http://www.ebi.ac.uk/pdbsum/2iuk PDBsum]</span>< | + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2iuk FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2iuk OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2iuk RCSB], [http://www.ebi.ac.uk/pdbsum/2iuk PDBsum]</span></td></tr> |
+ | <table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
- | [[Image:Consurf_key_small.gif|right]] | + | [[Image:Consurf_key_small.gif|200px|right]] |
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
Line 16: | Line 17: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
+ | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
The lipoxygenase family of lipid-peroxidizing, nonheme iron dioxygenases form products that are precursors for diverse physiological processes in both plants and animals. In soybean (Glycine max), five vegetative isoforms, VLX-A, VLX-B, VLX-C, VLX-D, VLX-E, and four seed isoforms LOX-1, LOX-2, LOX-3a, LOX-3b have been identified. In this study, we determined the crystal structures of the substrate-free forms of two major vegetative isoforms, with distinct enzymatic characteristics, VLX-B and VLX-D. Their structures are similar to the two seed isoforms, LOX-1 and LOX-3, having two domains with similar secondary structural elements: a beta-barrel N-terminal domain containing highly flexible loops and an alpha-helix-rich C-terminal catalytic domain. Detailed comparison of the structures of these two vegetative isoforms with the structures of LOX-1 and LOX-3 reveals important differences that help explain distinct aspects of the activity and positional specificity of these enzymes. In particular, the shape of the three branches of the internal subcavity, corresponding to substrate-binding and O(2) access, differs among the isoforms in a manner that reflects the differences in positional specificities. | The lipoxygenase family of lipid-peroxidizing, nonheme iron dioxygenases form products that are precursors for diverse physiological processes in both plants and animals. In soybean (Glycine max), five vegetative isoforms, VLX-A, VLX-B, VLX-C, VLX-D, VLX-E, and four seed isoforms LOX-1, LOX-2, LOX-3a, LOX-3b have been identified. In this study, we determined the crystal structures of the substrate-free forms of two major vegetative isoforms, with distinct enzymatic characteristics, VLX-B and VLX-D. Their structures are similar to the two seed isoforms, LOX-1 and LOX-3, having two domains with similar secondary structural elements: a beta-barrel N-terminal domain containing highly flexible loops and an alpha-helix-rich C-terminal catalytic domain. Detailed comparison of the structures of these two vegetative isoforms with the structures of LOX-1 and LOX-3 reveals important differences that help explain distinct aspects of the activity and positional specificity of these enzymes. In particular, the shape of the three branches of the internal subcavity, corresponding to substrate-binding and O(2) access, differs among the isoforms in a manner that reflects the differences in positional specificities. | ||
Line 22: | Line 24: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 09:40, 1 May 2014
Crystal structure of Soybean Lipoxygenase-D
|