2jk3
From Proteopedia
(Difference between revisions)
| Line 2: | Line 2: | ||
<StructureSection load='2jk3' size='340' side='right' caption='[[2jk3]], [[Resolution|resolution]] 2.20Å' scene=''> | <StructureSection load='2jk3' size='340' side='right' caption='[[2jk3]], [[Resolution|resolution]] 2.20Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
| - | [[2jk3]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacillus_cereus Bacillus cereus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2JK3 OCA]. <br> | + | <table><tr><td colspan='2'>[[2jk3]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacillus_cereus Bacillus cereus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2JK3 OCA]. <br> |
| - | <b>[[Ligand|Ligands:]]</b> <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br> | + | </td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene><br> |
| - | <b>[[Related_structure|Related:]]</b> [[2jj7|2jj7]], [[2fx0|2fx0]]< | + | <tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2jj7|2jj7]], [[2fx0|2fx0]]</td></tr> |
| - | <b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span>< | + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr> |
| - | <b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2jk3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2jk3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2jk3 RCSB], [http://www.ebi.ac.uk/pdbsum/2jk3 PDBsum]</span>< | + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2jk3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2jk3 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2jk3 RCSB], [http://www.ebi.ac.uk/pdbsum/2jk3 PDBsum]</span></td></tr> |
| + | <table> | ||
== Evolutionary Conservation == | == Evolutionary Conservation == | ||
| - | [[Image:Consurf_key_small.gif|right]] | + | [[Image:Consurf_key_small.gif|200px|right]] |
Check<jmol> | Check<jmol> | ||
<jmolCheckbox> | <jmolCheckbox> | ||
| Line 17: | Line 18: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/chain_selection.php?pdb_ID=2ata ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
| + | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
B. cereus HlyIIR belongs to the TetR family of dimeric transcriptional regulators. Unlike other members of the TetR family, HlyIIR contains an insert between alpha-helices alpha8 and alpha9, which is located at the subunit-subunit interface. N-terminal segment of this insert (amino acids, Pro161-Ser169) forms a short alpha-helix alpha8* that occupies a complementary cavity on the surface of the adjacent subunit, whereas the C-terminal segment comprising 16 amino acids (Leu170-Glu185) is disordered. To understand whether this disordered segment is important for protein's function, we determined crystal structures of two engineered HlyIIR proteins where this segment was either substituted by a seven-residue flexible Ser-Gly linker or replaced by a cleavable peptide containing proteolytic sites at both ends. Unexpectedly, alteration or proteolytic removal of the disordered segment resulted in changes in protein's conformation and in a remarkable rearrangement at the subunit-subunit interface. X-ray structures of the two engineered proteins revealed an unusual plasticity at the dimerization interface of HlyIIR enabling it to form dimers stabilized by different sets of interactions. Structural comparison indicates that in spite of the flexible nature of the disordered segment, it is critical for maintaining the native structure as it influences the position of alpha8*. The data demonstrate how disordered loops on protein surfaces may affect folding and subunit-subunit interactions. Proteins 2010. (c) 2010 Wiley-Liss, Inc. | B. cereus HlyIIR belongs to the TetR family of dimeric transcriptional regulators. Unlike other members of the TetR family, HlyIIR contains an insert between alpha-helices alpha8 and alpha9, which is located at the subunit-subunit interface. N-terminal segment of this insert (amino acids, Pro161-Ser169) forms a short alpha-helix alpha8* that occupies a complementary cavity on the surface of the adjacent subunit, whereas the C-terminal segment comprising 16 amino acids (Leu170-Glu185) is disordered. To understand whether this disordered segment is important for protein's function, we determined crystal structures of two engineered HlyIIR proteins where this segment was either substituted by a seven-residue flexible Ser-Gly linker or replaced by a cleavable peptide containing proteolytic sites at both ends. Unexpectedly, alteration or proteolytic removal of the disordered segment resulted in changes in protein's conformation and in a remarkable rearrangement at the subunit-subunit interface. X-ray structures of the two engineered proteins revealed an unusual plasticity at the dimerization interface of HlyIIR enabling it to form dimers stabilized by different sets of interactions. Structural comparison indicates that in spite of the flexible nature of the disordered segment, it is critical for maintaining the native structure as it influences the position of alpha8*. The data demonstrate how disordered loops on protein surfaces may affect folding and subunit-subunit interactions. Proteins 2010. (c) 2010 Wiley-Liss, Inc. | ||
| Line 23: | Line 25: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| + | </div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
Revision as of 09:41, 1 May 2014
CRYSTAL STRUCTURE OF THE HLYIIR MUTANT PROTEIN WITH RESIDUES 169-186 SUBSTITUTED BY GSSGSSG LINKER
| |||||||||||

