2lj6
From Proteopedia
(Difference between revisions)
Line 2: | Line 2: | ||
<StructureSection load='2lj6' size='340' side='right' caption='[[2lj6]], [[NMR_Ensembles_of_Models | 15 NMR models]]' scene=''> | <StructureSection load='2lj6' size='340' side='right' caption='[[2lj6]], [[NMR_Ensembles_of_Models | 15 NMR models]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | [[2lj6]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Pseudomonas_aeruginosa Pseudomonas aeruginosa]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LJ6 OCA]. <br> | + | <table><tr><td colspan='2'>[[2lj6]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Pseudomonas_aeruginosa Pseudomonas aeruginosa]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LJ6 OCA]. <br> |
- | <b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span>< | + | </td></tr><tr><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PA2138 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=287 Pseudomonas aeruginosa])</td></tr> |
- | <b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2lj6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lj6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2lj6 RCSB], [http://www.ebi.ac.uk/pdbsum/2lj6 PDBsum]</span>< | + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr> |
+ | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2lj6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2lj6 OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2lj6 RCSB], [http://www.ebi.ac.uk/pdbsum/2lj6 PDBsum]</span></td></tr> | ||
+ | <table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
The phosphoesterase (PE) domain of the bacterial DNA repair enzyme LigD possesses distinctive manganese-dependent 3'-phosphomonoesterase and 3'-phosphodiesterase activities. PE exemplifies a new family of DNA end-healing enzymes found in all phylogenetic domains. Here, we determined the structure of the PE domain of Pseudomonas aeruginosa LigD (PaePE) using solution NMR methodology. PaePE has a disordered N-terminus and a well-folded core that differs in instructive ways from the crystal structure of a PaePE*Mn(2+)* sulfate complex, especially at the active site that is found to be conformationally dynamic. Chemical shift perturbations in the presence of primer-template duplexes with 3'-deoxynucleotide, 3'-deoxynucleotide 3'-phosphate, or 3' ribonucleotide termini reveal the surface used by PaePE to bind substrate DNA and suggest a more efficient engagement in the presence of a 3'-ribonucleotide. Spectral perturbations measured in the presence of weakly catalytic (Cd(2+)) and inhibitory (Zn(2+)) metals provide evidence for significant conformational changes at and near the active site, compared to the relatively modest changes elicited by Mn(2+). | The phosphoesterase (PE) domain of the bacterial DNA repair enzyme LigD possesses distinctive manganese-dependent 3'-phosphomonoesterase and 3'-phosphodiesterase activities. PE exemplifies a new family of DNA end-healing enzymes found in all phylogenetic domains. Here, we determined the structure of the PE domain of Pseudomonas aeruginosa LigD (PaePE) using solution NMR methodology. PaePE has a disordered N-terminus and a well-folded core that differs in instructive ways from the crystal structure of a PaePE*Mn(2+)* sulfate complex, especially at the active site that is found to be conformationally dynamic. Chemical shift perturbations in the presence of primer-template duplexes with 3'-deoxynucleotide, 3'-deoxynucleotide 3'-phosphate, or 3' ribonucleotide termini reveal the surface used by PaePE to bind substrate DNA and suggest a more efficient engagement in the presence of a 3'-ribonucleotide. Spectral perturbations measured in the presence of weakly catalytic (Cd(2+)) and inhibitory (Zn(2+)) metals provide evidence for significant conformational changes at and near the active site, compared to the relatively modest changes elicited by Mn(2+). | ||
Line 11: | Line 14: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 09:41, 1 May 2014
Solution Structure and DNA-binding Properties of the Phosphoesterase Domain of DNA Ligase D
|