2ldj
From Proteopedia
(Difference between revisions)
Line 2: | Line 2: | ||
<StructureSection load='2ldj' size='340' side='right' caption='[[2ldj]], [[NMR_Ensembles_of_Models | 1 NMR models]]' scene=''> | <StructureSection load='2ldj' size='340' side='right' caption='[[2ldj]], [[NMR_Ensembles_of_Models | 1 NMR models]]' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | [[2ldj]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LDJ OCA]. <br> | + | <table><tr><td colspan='2'>[[2ldj]] is a 1 chain structure. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2LDJ OCA]. <br> |
- | <b>[[Non-Standard_Residue|NonStd Res:]]</b> <scene name='pdbligand=DGN:D-GLUTAMINE'>DGN</scene>< | + | </td></tr><tr><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=DGN:D-GLUTAMINE'>DGN</scene></td></tr> |
- | <b>Activity:</b> <span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span>< | + | <tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr> |
- | <b>Resources:</b> <span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ldj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ldj OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ldj RCSB], [http://www.ebi.ac.uk/pdbsum/2ldj PDBsum]</span>< | + | <tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2ldj FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2ldj OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2ldj RCSB], [http://www.ebi.ac.uk/pdbsum/2ldj PDBsum]</span></td></tr> |
+ | <table> | ||
+ | <div style="background-color:#fffaf0;"> | ||
== Publication Abstract from PubMed == | == Publication Abstract from PubMed == | ||
Judicious incorporation of d-amino acids in engineered proteins confers many advantages such as preventing degradation by endogenous proteases and promoting novel structures and functions not accessible to homochiral polypeptides. Glycine to d-alanine substitutions at the carboxy termini can stabilize alpha-helices by reducing conformational entropy. Beyond alanine, we propose additional side chain effects on the degree of stabilization conferred by d-amino acid substitutions. A detailed, molecular understanding of backbone and side chain interactions is important for developing rational, broadly applicable strategies in using d-amino acids to increase protein thermostability. Insight from structural bioinformatics combined with computational protein design can successfully guide the selection of stabilizing d-amino acid mutations. Substituting a key glycine in the Trp-cage miniprotein with d-Gln dramatically stabilizes the fold without altering the protein backbone. Stabilities of individual substitutions can be understood in terms of the balance of intramolecular forces both at the alpha-helix C-terminus and throughout the protein. | Judicious incorporation of d-amino acids in engineered proteins confers many advantages such as preventing degradation by endogenous proteases and promoting novel structures and functions not accessible to homochiral polypeptides. Glycine to d-alanine substitutions at the carboxy termini can stabilize alpha-helices by reducing conformational entropy. Beyond alanine, we propose additional side chain effects on the degree of stabilization conferred by d-amino acid substitutions. A detailed, molecular understanding of backbone and side chain interactions is important for developing rational, broadly applicable strategies in using d-amino acids to increase protein thermostability. Insight from structural bioinformatics combined with computational protein design can successfully guide the selection of stabilizing d-amino acid mutations. Substituting a key glycine in the Trp-cage miniprotein with d-Gln dramatically stabilizes the fold without altering the protein backbone. Stabilities of individual substitutions can be understood in terms of the balance of intramolecular forces both at the alpha-helix C-terminus and throughout the protein. | ||
Line 12: | Line 14: | ||
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 09:57, 1 May 2014
1H Chemical Shift Assignments and structure of Trp-Cage mini-protein with D-amino acid
|