2xpu

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
==TETR(D) IN COMPLEX WITH ANHYDROTETRACYCLINE.==
+
==TetR(D) in complex with anhydrotetracycline.==
<StructureSection load='2xpu' size='340' side='right' caption='[[2xpu]], [[Resolution|resolution]] 1.55&Aring;' scene=''>
<StructureSection load='2xpu' size='340' side='right' caption='[[2xpu]], [[Resolution|resolution]] 1.55&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[2xpu]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XPU OCA]. <br>
+
<table><tr><td colspan='2'>[[2xpu]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2XPU OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2XPU FirstGlance]. <br>
-
</td></tr><tr><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TDC:5A,6-ANHYDROTETRACYCLINE'>TDC</scene><br>
+
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene>, <scene name='pdbligand=TDC:5A,6-ANHYDROTETRACYCLINE'>TDC</scene></td></tr>
-
<tr><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2xgc|2xgc]], [[2xpw|2xpw]], [[3zqg|3zqg]], [[2x9d|2x9d]], [[1bjz|1bjz]], [[3zqh|3zqh]], [[2trt|2trt]], [[2xpv|2xpv]], [[2vkv|2vkv]], [[1ork|1ork]], [[2xge|2xge]], [[1a6i|1a6i]], [[2x6o|2x6o]], [[2vke|2vke]], [[1qpi|1qpi]], [[1du7|1du7]], [[2xgd|2xgd]], [[2xrl|2xrl]], [[2xpt|2xpt]], [[2xb5|2xb5]], [[2xps|2xps]], [[1bj0|1bj0]], [[3zqf|3zqf]], [[3zqi|3zqi]], [[2tct|2tct]], [[1bjy|1bjy]]</td></tr>
+
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2xgc|2xgc]], [[2xpw|2xpw]], [[3zqg|3zqg]], [[2x9d|2x9d]], [[1bjz|1bjz]], [[3zqh|3zqh]], [[2trt|2trt]], [[2xpv|2xpv]], [[2vkv|2vkv]], [[1ork|1ork]], [[2xge|2xge]], [[1a6i|1a6i]], [[2x6o|2x6o]], [[2vke|2vke]], [[1qpi|1qpi]], [[1du7|1du7]], [[2xgd|2xgd]], [[2xrl|2xrl]], [[2xpt|2xpt]], [[2xb5|2xb5]], [[2xps|2xps]], [[1bj0|1bj0]], [[3zqf|3zqf]], [[3zqi|3zqi]], [[2tct|2tct]], [[1bjy|1bjy]]</td></tr>
-
<tr><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucokinase Glucokinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.1.2 2.7.1.2] </span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2xpu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xpu OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2xpu RCSB], [http://www.ebi.ac.uk/pdbsum/2xpu PDBsum]</span></td></tr>
-
<tr><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2xpu FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2xpu OCA], [http://www.rcsb.org/pdb/explore.do?structureId=2xpu RCSB], [http://www.ebi.ac.uk/pdbsum/2xpu PDBsum]</span></td></tr>
+
</table>
-
<table>
+
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
The most frequently occurring resistance of Gram-negative bacteria against tetracyclines is triggered by drug recognition of the Tet repressor. This causes dissociation of the repressor-operator DNA complex and enables expression of the resistance protein TetA, which is responsible for active efflux of tetracycline. The 2.5 angstrom resolution crystal structure of the homodimeric Tet repressor complexed with tetracycline-magnesium reveals detailed drug recognition. The orientation of the operator-binding helix-turn-helix motifs of the repressor is inverted in comparison with other DNA binding proteins. The repressor-drug complex is unable to interact with DNA because the separation of the DNA binding motifs is 5 angstroms wider than usually observed.
+
Genes that render bacteria resistant to tetracycline-derived antibiotics are tightly regulated by repressors of the TetR family. In their physiologically relevant, magnesium-complexed form, tetracyclines induce allosteric rearrangements in the TetR homodimer, leading to its release from the promoter and derepression of transcription. According to earlier crystallographic work, recognition of the tetracycline-associated magnesium ion by TetR is crucial and triggers the allosteric cascade. Nevertheless, the derivative 5a,6-anhydrotetracycline, which shows an increased affinity for TetR, causes promoter release even in the absence of magnesium. To resolve this paradox, it has been proposed that metal-free 5a,6-anhydrotetracycline acts via an exceptional, conformationally different induction mode that circumvents the normal magnesium requirement. We have tested this hypothesis by determining crystal structures of TetR-5a,6-anhydrotetracycline complexes in the presence of magnesium, ethylenediaminetetraacetic acid, or high concentrations of potassium. Analysis of these three structures reveals that, irrespective of the metal, the effects of 5a,6-anhydrotetracycline binding are indistinguishable from those of canonical induction by other tetracyclines. Together with a close scrutiny of the earlier evidence of a metal-triggered mechanism, these results demonstrate that magnesium recognition per se is not a prerequisite for tetracycline repressor allostery.
-
Structure of the Tet repressor-tetracycline complex and regulation of antibiotic resistance.,Hinrichs W, Kisker C, Duvel M, Muller A, Tovar K, Hillen W, Saenger W Science. 1994 Apr 15;264(5157):418-20. PMID:8153629<ref>PMID:8153629</ref>
+
Tetracycline Repressor Allostery Does Not Depend on Divalent Metal Recognition.,Werten S, Dalm D, Palm GJ, Grimm CC, Hinrichs W Biochemistry. 2014 Dec 9. PMID:25432019<ref>PMID:25432019</ref>
-
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br>
+
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
</div>
</div>
 +
 +
==See Also==
 +
*[[Tetracycline repressor protein|Tetracycline repressor protein]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Escherichia coli]]
+
[[Category: Bacillus coli migula 1895]]
-
[[Category: Dalm, D.]]
+
[[Category: Dalm, D]]
-
[[Category: Hinrichs, W.]]
+
[[Category: Hinrichs, W]]
-
[[Category: Palm, G J.]]
+
[[Category: Palm, G J]]
[[Category: Helix-turn-helix]]
[[Category: Helix-turn-helix]]
[[Category: Metal coordination]]
[[Category: Metal coordination]]
[[Category: Transcription]]
[[Category: Transcription]]
[[Category: Transcription regulator]]
[[Category: Transcription regulator]]

Revision as of 11:29, 10 December 2014

TetR(D) in complex with anhydrotetracycline.

2xpu, resolution 1.55Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools