1aj9

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
|PDB= 1aj9 |SIZE=350|CAPTION= <scene name='initialview01'>1aj9</scene>, resolution 2.2&Aring;
|PDB= 1aj9 |SIZE=350|CAPTION= <scene name='initialview01'>1aj9</scene>, resolution 2.2&Aring;
|SITE=
|SITE=
-
|LIGAND= <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene> and <scene name='pdbligand=CMO:CARBON MONOXIDE'>CMO</scene>
+
|LIGAND= <scene name='pdbligand=CMO:CARBON+MONOXIDE'>CMO</scene>, <scene name='pdbligand=HEM:PROTOPORPHYRIN+IX+CONTAINING+FE'>HEM</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>
|ACTIVITY=
|ACTIVITY=
|GENE=
|GENE=
 +
|DOMAIN=
 +
|RELATEDENTRY=
 +
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1aj9 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1aj9 OCA], [http://www.ebi.ac.uk/pdbsum/1aj9 PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1aj9 RCSB]</span>
}}
}}
Line 14: Line 17:
==Overview==
==Overview==
The three-dimensional structure and associated solvent of human carboxyhemoglobin at 2.2 A resolution are compared with other R-state and T-state human hemoglobin structures. The crystal form is isomorphous with that of the 2.7 A structure of carboxyhemoglobin reported earlier [Baldwin (1980). J. Mol. Biol. 136, 103-128], whose coordinates were used as a starting model, and with the 2.2 A structure described in an earlier report [Derewenda et al. (1990). J. Mol. Biol. 211, 515-519]. During the course of the refinement, a natural mutation of the alpha-subunit, A53S, was discovered that forms a new crystal contact through a bridging water molecule. The protein structure shows a significant difference between the alpha and beta heme geometries, with Fe-C-O angles of 125 and 162 degrees, respectively. The carboxyhemoglobin is compared with other fully ligated R-state human hemoglobins [Baldwin (1980). J. Mol. Biol. 136, 103-128; Shaanan (1983). J. Mol. Biol. 195, 419-422] with the R2-state hemoglobin [Silva et al. (1992). J. Biol. Chem. 267, 17248-17256] and with T-state deoxyhemoglobin [Fronticelli et al. (1994). J. Biol. Chem. 269, 23965-23969]. The structure is similar to the earlier reported R-state structures, but there are differences in many side-chain conformations, the associated water structure and the presence and the position of a phosphate ion. The quaternary changes between the R-state carboxyhemoglobin and the R2-state and T-state structures are in general consistent with those reported in the earlier structures. The location of 238 water molecules and a phosphate ion in the carboxyhemoglobin structure allows the first comparison of the solvent structures of the R-state and T-state structures. Distinctive hydration patterns for each of the quaternary structures are observed, but a number of conserved water molecule binding sites are found that are independent of the conformational state of the protein.
The three-dimensional structure and associated solvent of human carboxyhemoglobin at 2.2 A resolution are compared with other R-state and T-state human hemoglobin structures. The crystal form is isomorphous with that of the 2.7 A structure of carboxyhemoglobin reported earlier [Baldwin (1980). J. Mol. Biol. 136, 103-128], whose coordinates were used as a starting model, and with the 2.2 A structure described in an earlier report [Derewenda et al. (1990). J. Mol. Biol. 211, 515-519]. During the course of the refinement, a natural mutation of the alpha-subunit, A53S, was discovered that forms a new crystal contact through a bridging water molecule. The protein structure shows a significant difference between the alpha and beta heme geometries, with Fe-C-O angles of 125 and 162 degrees, respectively. The carboxyhemoglobin is compared with other fully ligated R-state human hemoglobins [Baldwin (1980). J. Mol. Biol. 136, 103-128; Shaanan (1983). J. Mol. Biol. 195, 419-422] with the R2-state hemoglobin [Silva et al. (1992). J. Biol. Chem. 267, 17248-17256] and with T-state deoxyhemoglobin [Fronticelli et al. (1994). J. Biol. Chem. 269, 23965-23969]. The structure is similar to the earlier reported R-state structures, but there are differences in many side-chain conformations, the associated water structure and the presence and the position of a phosphate ion. The quaternary changes between the R-state carboxyhemoglobin and the R2-state and T-state structures are in general consistent with those reported in the earlier structures. The location of 238 water molecules and a phosphate ion in the carboxyhemoglobin structure allows the first comparison of the solvent structures of the R-state and T-state structures. Distinctive hydration patterns for each of the quaternary structures are observed, but a number of conserved water molecule binding sites are found that are independent of the conformational state of the protein.
- 
-
==Disease==
 
-
Known diseases associated with this structure: Erythremias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Erythremias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Erythrocytosis OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], HPFH, deletion type OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Heinz body anemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Heinz body anemias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Heinz body anemias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Hemoglobin H disease OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Hypochromic microcytic anemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Methemoglobinemias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Methemoglobinemias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Sickle cell anemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Thalassemia, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141850 141850]], Thalassemia-beta, dominant inclusion-body OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]], Thalassemias, alpha- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141800 141800]], Thalassemias, beta- OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=141900 141900]]
 
==About this Structure==
==About this Structure==
Line 29: Line 29:
[[Category: Ji, X.]]
[[Category: Ji, X.]]
[[Category: Vasquez, G B.]]
[[Category: Vasquez, G B.]]
-
[[Category: CMO]]
 
-
[[Category: HEM]]
 
-
[[Category: PO4]]
 
[[Category: alpha-a53]]
[[Category: alpha-a53]]
[[Category: carbonmonoxide]]
[[Category: carbonmonoxide]]
Line 41: Line 38:
[[Category: oxygen transport]]
[[Category: oxygen transport]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 09:58:20 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 18:41:24 2008''

Revision as of 15:41, 30 March 2008


PDB ID 1aj9

Drag the structure with the mouse to rotate
, resolution 2.2Å
Ligands: , ,
Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



R-STATE HUMAN CARBONMONOXYHEMOGLOBIN ALPHA-A53S


Overview

The three-dimensional structure and associated solvent of human carboxyhemoglobin at 2.2 A resolution are compared with other R-state and T-state human hemoglobin structures. The crystal form is isomorphous with that of the 2.7 A structure of carboxyhemoglobin reported earlier [Baldwin (1980). J. Mol. Biol. 136, 103-128], whose coordinates were used as a starting model, and with the 2.2 A structure described in an earlier report [Derewenda et al. (1990). J. Mol. Biol. 211, 515-519]. During the course of the refinement, a natural mutation of the alpha-subunit, A53S, was discovered that forms a new crystal contact through a bridging water molecule. The protein structure shows a significant difference between the alpha and beta heme geometries, with Fe-C-O angles of 125 and 162 degrees, respectively. The carboxyhemoglobin is compared with other fully ligated R-state human hemoglobins [Baldwin (1980). J. Mol. Biol. 136, 103-128; Shaanan (1983). J. Mol. Biol. 195, 419-422] with the R2-state hemoglobin [Silva et al. (1992). J. Biol. Chem. 267, 17248-17256] and with T-state deoxyhemoglobin [Fronticelli et al. (1994). J. Biol. Chem. 269, 23965-23969]. The structure is similar to the earlier reported R-state structures, but there are differences in many side-chain conformations, the associated water structure and the presence and the position of a phosphate ion. The quaternary changes between the R-state carboxyhemoglobin and the R2-state and T-state structures are in general consistent with those reported in the earlier structures. The location of 238 water molecules and a phosphate ion in the carboxyhemoglobin structure allows the first comparison of the solvent structures of the R-state and T-state structures. Distinctive hydration patterns for each of the quaternary structures are observed, but a number of conserved water molecule binding sites are found that are independent of the conformational state of the protein.

About this Structure

1AJ9 is a Protein complex structure of sequences from Homo sapiens. Full crystallographic information is available from OCA.

Reference

Human carboxyhemoglobin at 2.2 A resolution: structure and solvent comparisons of R-state, R2-state and T-state hemoglobins., Vasquez GB, Ji X, Fronticelli C, Gilliland GL, Acta Crystallogr D Biol Crystallogr. 1998 May 1;54(Pt 3):355-66. PMID:9761903

Page seeded by OCA on Sun Mar 30 18:41:24 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools