2hbb

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 20: Line 20:
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
-
The use of noncoded amino acids as spectroscopic probes of protein folding and function is growing rapidly, in large part because of advances in the methodology for their incorporation. Recently p-cyanophenylalanine has been employed as a fluorescence and IR probe, as well as a FRET probe to study protein folding, protein-membrane interactions, protein-protein interactions and amyloid formation. The probe has been shown to be exquisitely sensitive to hydrogen bonding interactions involving the cyano group, and its fluorescence quantum yield increases dramatically when it is hydrogen bonded. However, a detailed understanding of the factors which influence its fluorescence is required to be able to use this popular probe accurately. Here we demonstrate the recombinant incorporation of p-cyanophenylalanine in the N-terminal domain of the ribosomal protein L9. Native state fluorescence is very low, which suggests that the group is sequestered from solvent; however, IR measurements and molecular dynamics simulations show that the cyano group is exposed to solvent and forms hydrogen bonds to water. Analysis of mutant proteins and model peptides demonstrates that the reduced native state fluorescence is caused by the effective quenching of p-cyanophenylalanine fluorescence via FRET to tyrosine side-chains. The implications for the interpretation of p-cyanophenylalanine fluorescence measurements and FRET studies are discussed.
+
Unfolded and partially unfolded proteins participate in a wide range of biological processes from pathological aggregation to the regulation of normal cellular activity. Unfolded states can be populated under strongly denaturing conditions, but the ensemble which is relevant for folding, stability, and aggregation is that populated under physiological conditions. Characterization of nonnative states is critical for the understanding of these processes, yet comparatively little is known about their energetics and their structural propensities under native conditions. The standard view is that energetically significant coupled interactions involving multiple residues are generally not present in the denatured state ensemble (DSE) or in intrinsically disordered proteins. Using the N-terminal domain of the ribosomal protein L9, a small alpha-beta protein, as an experimental model system, we demonstrate that networks of energetically significant, coupled interactions can form in the DSE of globular proteins, and can involve residues that are distant in sequence and spatially well separated in the native structure. X-ray crystallography, NMR, dynamics studies, native state pKa measurements, and thermodynamic analysis of more than 25 mutants demonstrate that residues are energetically coupled in the DSE. Altering these interactions by mutation affects the stability of the domain. Mutations that alter the energetics of the DSE can impact the analysis of cooperativity and folding, and may play a role in determining the propensity to aggregate.
-
Interpretation of p-cyanophenylalanine fluorescence in proteins in terms of solvent exposure and contribution of side-chain quenchers: a combined fluorescence, IR and molecular dynamics study.,Taskent-Sezgin H, Chung J, Patsalo V, Miyake-Stoner SJ, Miller AM, Brewer SH, Mehl RA, Green DF, Raleigh DP, Carrico I Biochemistry. 2009 Sep 29;48(38):9040-6. doi: 10.1021/bi900938z. PMID:19658436<ref>PMID:19658436</ref>
+
Energetically significant networks of coupled interactions within an unfolded protein.,Cho JH, Meng W, Sato S, Kim EY, Schindelin H, Raleigh DP Proc Natl Acad Sci U S A. 2014 Aug 19;111(33):12079-84. doi:, 10.1073/pnas.1402054111. Epub 2014 Aug 6. PMID:25099351<ref>PMID:25099351</ref>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>

Revision as of 06:57, 24 September 2014

Crystal Structure of the N-terminal Domain of Ribosomal Protein L9 (NTL9)

2hbb, resolution 1.90Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Views
Personal tools
Navigation
Toolbox