Structural highlights
Function
[HS90A_HUMAN] Molecular chaperone that promotes the maturation, structural maintenance and proper regulation of specific target proteins involved for instance in cell cycle control and signal transduction. Undergoes a functional cycle that is linked to its ATPase activity. This cycle probably induces conformational changes in the client proteins, thereby causing their activation. Interacts dynamically with various co-chaperones that modulate its substrate recognition, ATPase cycle and chaperone function.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
A series of dihydroxyphenylpyrazole compounds were identified as a unique class of reversible Hsp90 inhibitors. The crystal structures for two of the identified compounds complexed with the N-terminal ATP binding domain of human Hsp90alpha were determined. The dihydroxyphenyl ring of the compounds fits deeply into the adenine binding pocket with the C2 hydroxyl group forming a direct hydrogen bond with the side chain of Asp93. The pyrazole ring forms hydrogen bonds to the backbone carbonyl of Gly97, the hydroxyl group of Thr184 and to a water molecule, which is present in all of the published HSP90 structures. One of the identified compounds (G3130) demonstrated cellular activities (in Her-2 degradation and activation of Hsp70 promoter) consistent with the inhibition of cellular Hsp90 functions.
Crystal structures of human HSP90alpha-complexed with dihydroxyphenylpyrazoles.,Kreusch A, Han S, Brinker A, Zhou V, Choi HS, He Y, Lesley SA, Caldwell J, Gu XJ Bioorg Med Chem Lett. 2005 Mar 1;15(5):1475-8. PMID:15713410[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Martinez-Ruiz A, Villanueva L, Gonzalez de Orduna C, Lopez-Ferrer D, Higueras MA, Tarin C, Rodriguez-Crespo I, Vazquez J, Lamas S. S-nitrosylation of Hsp90 promotes the inhibition of its ATPase and endothelial nitric oxide synthase regulatory activities. Proc Natl Acad Sci U S A. 2005 Jun 14;102(24):8525-30. Epub 2005 Jun 3. PMID:15937123 doi:10.1073/pnas.0407294102
- ↑ Forsythe HL, Jarvis JL, Turner JW, Elmore LW, Holt SE. Stable association of hsp90 and p23, but Not hsp70, with active human telomerase. J Biol Chem. 2001 May 11;276(19):15571-4. Epub 2001 Mar 23. PMID:11274138 doi:10.1074/jbc.C100055200
- ↑ Kreusch A, Han S, Brinker A, Zhou V, Choi HS, He Y, Lesley SA, Caldwell J, Gu XJ. Crystal structures of human HSP90alpha-complexed with dihydroxyphenylpyrazoles. Bioorg Med Chem Lett. 2005 Mar 1;15(5):1475-8. PMID:15713410 doi:10.1016/j.bmcl.2004.12.087