1h6l

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
|PDB= 1h6l |SIZE=350|CAPTION= <scene name='initialview01'>1h6l</scene>, resolution 1.8&Aring;
|PDB= 1h6l |SIZE=350|CAPTION= <scene name='initialview01'>1h6l</scene>, resolution 1.8&Aring;
|SITE= <scene name='pdbsite=AC1:Structural+Ca+401+Binding+Site+For+Chain'>AC1</scene>, <scene name='pdbsite=AC2:Structural+Ca+402+Binding+Site+For+Chain'>AC2</scene>, <scene name='pdbsite=AC3:Structural+Ca+403+Binding+Site+For+Chain'>AC3</scene>, <scene name='pdbsite=AC4:Activity+Ca+404+Binding+Site+For+Chain+A'>AC4</scene>, <scene name='pdbsite=AC5:Activity+Ca+405+Binding+Site+For+Chain+A'>AC5</scene>, <scene name='pdbsite=AC6:Activity+Ca+406+Binding+Site+For+Chain+A'>AC6</scene>, <scene name='pdbsite=AC7:Activity+Ca+407+Binding+Site+For+Chain+A'>AC7</scene>, <scene name='pdbsite=AC8:Product+Po4+501+Binding+Site+For+Chain+A'>AC8</scene> and <scene name='pdbsite=AC9:Product+Po4+502+Binding+Site+For+Chain+A'>AC9</scene>
|SITE= <scene name='pdbsite=AC1:Structural+Ca+401+Binding+Site+For+Chain'>AC1</scene>, <scene name='pdbsite=AC2:Structural+Ca+402+Binding+Site+For+Chain'>AC2</scene>, <scene name='pdbsite=AC3:Structural+Ca+403+Binding+Site+For+Chain'>AC3</scene>, <scene name='pdbsite=AC4:Activity+Ca+404+Binding+Site+For+Chain+A'>AC4</scene>, <scene name='pdbsite=AC5:Activity+Ca+405+Binding+Site+For+Chain+A'>AC5</scene>, <scene name='pdbsite=AC6:Activity+Ca+406+Binding+Site+For+Chain+A'>AC6</scene>, <scene name='pdbsite=AC7:Activity+Ca+407+Binding+Site+For+Chain+A'>AC7</scene>, <scene name='pdbsite=AC8:Product+Po4+501+Binding+Site+For+Chain+A'>AC8</scene> and <scene name='pdbsite=AC9:Product+Po4+502+Binding+Site+For+Chain+A'>AC9</scene>
-
|LIGAND= <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene> and <scene name='pdbligand=PO4:PHOSPHATE ION'>PO4</scene>
+
|LIGAND= <scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene>
|ACTIVITY=
|ACTIVITY=
|GENE=
|GENE=
 +
|DOMAIN=
 +
|RELATEDENTRY=
 +
|RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1h6l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1h6l OCA], [http://www.ebi.ac.uk/pdbsum/1h6l PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1h6l RCSB]</span>
}}
}}
Line 25: Line 28:
[[Category: Oh, B H.]]
[[Category: Oh, B H.]]
[[Category: Shin, S.]]
[[Category: Shin, S.]]
-
[[Category: CA]]
 
-
[[Category: PO4]]
 
[[Category: phosphatase]]
[[Category: phosphatase]]
[[Category: phosphate]]
[[Category: phosphate]]
Line 32: Line 33:
[[Category: propeller]]
[[Category: propeller]]
-
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Thu Mar 20 11:32:56 2008''
+
''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 20:58:51 2008''

Revision as of 17:58, 30 March 2008


PDB ID 1h6l

Drag the structure with the mouse to rotate
, resolution 1.8Å
Sites: , , , , , , , and
Ligands: ,
Resources: FirstGlance, OCA, PDBsum, RCSB
Coordinates: save as pdb, mmCIF, xml



BETA-PROPELLER PHYTASE IN COMPLEX WITH PHOSPHATE AND CALCIUM IONS


Overview

BACKGROUND: Phytases hydrolyze phytic acid (myo-inositol-hexakisphosphate) to less-phosphorylated myo-inositol derivatives and inorganic phosphate. Phytases are used in animal feed to reduce phosphate pollution in the environment. Recently, a thermostable, calcium-dependent Bacillus phytase was identified that represents the first example of the beta propeller fold exhibiting phosphatase activity. We sought to delineate the catalytic mechanism and property of this enzyme. RESULTS: The crystal structure of the enzyme in complex with inorganic phosphate reveals that two phosphates and four calcium ions are tightly bound at the active site. Mutation of the residues involved in the calcium chelation results in severe defects in the enzyme's activity. One phosphate ion, chelating all of the four calcium ions, is close to a water molecule bridging two of the bound calcium ions. Fluoride ion, which is expected to replace this water molecule, is an uncompetitive inhibitor of the enzyme. The enzyme is able to hydrolyze any of the six phosphate groups of phytate. CONCLUSIONS: The enzyme reaction is likely to proceed through a direct attack of the metal-bridging water molecule on the phosphorous atom of a substrate and the subsequent stabilization of the pentavalent transition state by the bound calcium ions. The enzyme has two phosphate binding sites, the "cleavage site", which is responsible for the hydrolysis of a substrate, and the "affinity site", which increases the binding affinity for substrates containing adjacent phosphate groups. The existence of the two nonequivalent phosphate binding sites explains the puzzling formation of the alternately dephosphorylated myo-inositol triphosphates from phytate and the hydrolysis of myo-inositol monophosphates.

About this Structure

1H6L is a Single protein structure of sequence from Bacillus amyloliquefaciens. Full crystallographic information is available from OCA.

Reference

Enzyme mechanism and catalytic property of beta propeller phytase., Shin S, Ha NC, Oh BC, Oh TK, Oh BH, Structure. 2001 Sep;9(9):851-8. PMID:11566134

Page seeded by OCA on Sun Mar 30 20:58:51 2008

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools