Glutamate receptor (GluA2)

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
<StructureSection load='3kg2' size='500' side='right' scene='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Default3kg2/1' caption='The rat glycosylated glutamate receptor in complex with a competitive antagonist ([[3kg2]])'>
+
<StructureSection load='3kg2' size='350' side='right' scene='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Default3kg2/1' caption='The rat glycosylated glutamate receptor in complex with a competitive antagonist ([[3kg2]])'>
__NOTOC__
__NOTOC__
The glutamate receptor is the ion channel opened by glutamate that keeps neurons in touch by mediating fast cell-to-cell information transfer in the nervous system. Several studies have revealed structures for portions of the glutamate receptor <ref name="r80">PMID: 19461580</ref><ref name="r14">PMID: 19465914</ref><ref name="r22">PMID: 19910922</ref><ref>PMID: 9804426</ref>. Groundbreaking work elucidated the structure of a complete functional, homomeric glutamate receptor<ref name="main">PMID:19946266</ref><ref>PMID: 20010675</ref> and that structure, [[3kg2]], is the subject of this page.
The glutamate receptor is the ion channel opened by glutamate that keeps neurons in touch by mediating fast cell-to-cell information transfer in the nervous system. Several studies have revealed structures for portions of the glutamate receptor <ref name="r80">PMID: 19461580</ref><ref name="r14">PMID: 19465914</ref><ref name="r22">PMID: 19910922</ref><ref>PMID: 9804426</ref>. Groundbreaking work elucidated the structure of a complete functional, homomeric glutamate receptor<ref name="main">PMID:19946266</ref><ref>PMID: 20010675</ref> and that structure, [[3kg2]], is the subject of this page.
Line 36: Line 36:
*As explored further in [[#Transmembrane domain architecture and the occluded pore|a later section below]] , the <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Tmd_domain_4fold/2'>symmetry is an overall four-fold for the TMD</scene>. Thus, remarkably, the symmetry switches from an overall two-fold symmetry for the ATD and LBD to four-fold for the TMD.
*As explored further in [[#Transmembrane domain architecture and the occluded pore|a later section below]] , the <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Tmd_domain_4fold/2'>symmetry is an overall four-fold for the TMD</scene>. Thus, remarkably, the symmetry switches from an overall two-fold symmetry for the ATD and LBD to four-fold for the TMD.
-
</StructureSection>
+
 
===Subunit Non-Equivalence, Transmembrane Domain Architecture and the Occluded Pore===
===Subunit Non-Equivalence, Transmembrane Domain Architecture and the Occluded Pore===
Line 71: Line 71:
:{{Link Toggle FancyCartoonHighQualityView}}.
:{{Link Toggle FancyCartoonHighQualityView}}.
*The TMD domain of the GluA2 receptor shares structural and sequence similarity with the pore region of the potassium (K+), as hinted at by earlier work<ref name ="pot1">PMID: 7539962</ref><ref name ="pot2">PMID: 7761417</ref><ref name ="pot3">PMID: 9525859</ref>. Here the pore region of ''Streptomyces lividans'' potassium channel ([[1bl8]])<scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Gluvspottmd/4' target='main2NDwindow'> superposed with the TMD domain of GluA2</scene>, specifically the <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Gluvspottmdm3/1' target='main2NDwindow'>inner helix of the K+ channel aligned with the M3 segment</scene>. The <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Gluvspottmdm1/2' target='main2NDwindow'>M1 segment of GluA2 also overlays well with the outer helix</scene> of the K+ channel even though these portions weren't even included in the calculation of the alignment seen here.
*The TMD domain of the GluA2 receptor shares structural and sequence similarity with the pore region of the potassium (K+), as hinted at by earlier work<ref name ="pot1">PMID: 7539962</ref><ref name ="pot2">PMID: 7761417</ref><ref name ="pot3">PMID: 9525859</ref>. Here the pore region of ''Streptomyces lividans'' potassium channel ([[1bl8]])<scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Gluvspottmd/4' target='main2NDwindow'> superposed with the TMD domain of GluA2</scene>, specifically the <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Gluvspottmdm3/1' target='main2NDwindow'>inner helix of the K+ channel aligned with the M3 segment</scene>. The <scene name='User:Wayne_Decatur/Sandbox_Glutamate_receptor/Gluvspottmdm1/2' target='main2NDwindow'>M1 segment of GluA2 also overlays well with the outer helix</scene> of the K+ channel even though these portions weren't even included in the calculation of the alignment seen here.
-
</StructureSection>
+
 
==Details of Structure Featured==
==Details of Structure Featured==
[[3kg2]] is a 4 chains structure of sequences from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3KG2 OCA]. Although it is billed as the first structure of a full-length glutamate receptor, the carboxy-terminal domain is not present in the structure.
[[3kg2]] is a 4 chains structure of sequences from [http://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3KG2 OCA]. Although it is billed as the first structure of a full-length glutamate receptor, the carboxy-terminal domain is not present in the structure.

Revision as of 12:17, 11 December 2014

The rat glycosylated glutamate receptor in complex with a competitive antagonist (3kg2)

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Wayne Decatur, Alexander Berchansky, Michal Harel, David Canner, Nikki Hunter

Personal tools