1qwh
From Proteopedia
| Line 7: | Line 7: | ||
|ACTIVITY= | |ACTIVITY= | ||
|GENE= | |GENE= | ||
| + | |DOMAIN= | ||
| + | |RELATEDENTRY= | ||
| + | |RESOURCES=<span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1qwh FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1qwh OCA], [http://www.ebi.ac.uk/pdbsum/1qwh PDBsum], [http://www.rcsb.org/pdb/explore.do?structureId=1qwh RCSB]</span> | ||
}} | }} | ||
| Line 14: | Line 17: | ||
==Overview== | ==Overview== | ||
The amyloidogenic homotetrameric protein transthyretin (TTR) must undergo rate-limiting dissociation to partially denatured monomers in order to aggregate. TTR contains two distinct quaternary interfaces, one of which defines the binding sites for thyroxine and small-molecule amyloidogenesis inhibitors. Kinetic stabilization of the tetramer can be accomplished either by the binding of amyloidogenesis inhibitors selectively to the native state over the dissociative transition state or by the introduction of trans-suppressor subunits (T119M) into heterotetramers to destabilize the dissociative transition state. In each case, increasing the dissociation activation barrier prevents tetramer dissociation. Herein, we demonstrate that tethering two subunits whose quaternary interface defines the thyroxine binding site also dramatically increases the barrier for tetramer dissociation, apparently by destabilization of the dissociative transition state. The tethered construct (TTR-L-TTR)2 is structurally and functionally equivalent to wild-type TTR. Urea is unable to denature (TTR-L-TTR)2, yet it is able to maintain the denatured state once denaturation is achieved by GdnHCl treatment, suggesting that (TTR-L-TTR)2 is kinetically rather than thermodynamically stabilized, consistent with the identical wild-type TTR and (TTR-L-TTR)2 GdnHCl denaturation curves. Studies focused on a construct containing a single TTR-L-TTR chain and two normal monomer subunits establish that alteration of only one quaternary structural interface is sufficient to impose kinetic stabilization on the entire quaternary structure. | The amyloidogenic homotetrameric protein transthyretin (TTR) must undergo rate-limiting dissociation to partially denatured monomers in order to aggregate. TTR contains two distinct quaternary interfaces, one of which defines the binding sites for thyroxine and small-molecule amyloidogenesis inhibitors. Kinetic stabilization of the tetramer can be accomplished either by the binding of amyloidogenesis inhibitors selectively to the native state over the dissociative transition state or by the introduction of trans-suppressor subunits (T119M) into heterotetramers to destabilize the dissociative transition state. In each case, increasing the dissociation activation barrier prevents tetramer dissociation. Herein, we demonstrate that tethering two subunits whose quaternary interface defines the thyroxine binding site also dramatically increases the barrier for tetramer dissociation, apparently by destabilization of the dissociative transition state. The tethered construct (TTR-L-TTR)2 is structurally and functionally equivalent to wild-type TTR. Urea is unable to denature (TTR-L-TTR)2, yet it is able to maintain the denatured state once denaturation is achieved by GdnHCl treatment, suggesting that (TTR-L-TTR)2 is kinetically rather than thermodynamically stabilized, consistent with the identical wild-type TTR and (TTR-L-TTR)2 GdnHCl denaturation curves. Studies focused on a construct containing a single TTR-L-TTR chain and two normal monomer subunits establish that alteration of only one quaternary structural interface is sufficient to impose kinetic stabilization on the entire quaternary structure. | ||
| - | |||
| - | ==Disease== | ||
| - | Known diseases associated with this structure: Amyloid neuropathy, familial, several allelic types OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176300 176300]], Amyloidosis, senile systemic OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176300 176300]], Carpal tunnel syndrome, familial OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176300 176300]], Dystransthyretinemic hyperthyroxinemia OMIM:[[http://www.ncbi.nlm.nih.gov/entrez/dispomim.cgi?id=176300 176300]] | ||
==About this Structure== | ==About this Structure== | ||
| Line 40: | Line 40: | ||
[[Category: transport]] | [[Category: transport]] | ||
| - | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun Mar 30 23:19:56 2008'' |
Revision as of 20:19, 30 March 2008
| |||||||
| , resolution 1.36Å | |||||||
|---|---|---|---|---|---|---|---|
| Resources: | FirstGlance, OCA, PDBsum, RCSB | ||||||
| Coordinates: | save as pdb, mmCIF, xml | ||||||
a covalent dimer of transthyretin that affects the amyloid pathway
Overview
The amyloidogenic homotetrameric protein transthyretin (TTR) must undergo rate-limiting dissociation to partially denatured monomers in order to aggregate. TTR contains two distinct quaternary interfaces, one of which defines the binding sites for thyroxine and small-molecule amyloidogenesis inhibitors. Kinetic stabilization of the tetramer can be accomplished either by the binding of amyloidogenesis inhibitors selectively to the native state over the dissociative transition state or by the introduction of trans-suppressor subunits (T119M) into heterotetramers to destabilize the dissociative transition state. In each case, increasing the dissociation activation barrier prevents tetramer dissociation. Herein, we demonstrate that tethering two subunits whose quaternary interface defines the thyroxine binding site also dramatically increases the barrier for tetramer dissociation, apparently by destabilization of the dissociative transition state. The tethered construct (TTR-L-TTR)2 is structurally and functionally equivalent to wild-type TTR. Urea is unable to denature (TTR-L-TTR)2, yet it is able to maintain the denatured state once denaturation is achieved by GdnHCl treatment, suggesting that (TTR-L-TTR)2 is kinetically rather than thermodynamically stabilized, consistent with the identical wild-type TTR and (TTR-L-TTR)2 GdnHCl denaturation curves. Studies focused on a construct containing a single TTR-L-TTR chain and two normal monomer subunits establish that alteration of only one quaternary structural interface is sufficient to impose kinetic stabilization on the entire quaternary structure.
About this Structure
1QWH is a Single protein structure of sequence from Homo sapiens. Full crystallographic information is available from OCA.
Reference
Kinetic stabilization of the native state by protein engineering: implications for inhibition of transthyretin amyloidogenesis., Foss TR, Kelker MS, Wiseman RL, Wilson IA, Kelly JW, J Mol Biol. 2005 Apr 8;347(4):841-54. PMID:15769474
Page seeded by OCA on Sun Mar 30 23:19:56 2008
