4g3x
From Proteopedia
(Difference between revisions)
												
			
			| Line 2: | Line 2: | ||
| <StructureSection load='4g3x' size='340' side='right' caption='[[4g3x]], [[Resolution|resolution]] 3.25Å' scene=''> | <StructureSection load='4g3x' size='340' side='right' caption='[[4g3x]], [[Resolution|resolution]] 3.25Å' scene=''> | ||
| == Structural highlights == | == Structural highlights == | ||
| - | <table><tr><td colspan='2'>[[4g3x]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/ | + | <table><tr><td colspan='2'>[[4g3x]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4G3X OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4G3X FirstGlance]. <br> | 
| </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GNP:PHOSPHOAMINOPHOSPHONIC+ACID-GUANYLATE+ESTER'>GNP</scene>, <scene name='pdbligand=MG:MAGNESIUM+ION'>MG</scene></td></tr> | ||
| <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4g0n|4g0n]]</td></tr> | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4g0n|4g0n]]</td></tr> | ||
| - | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HRAS, HRAS1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606  | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">HRAS, HRAS1 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), RAF1, RAF ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | 
| <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Non-specific_serine/threonine_protein_kinase Non-specific serine/threonine protein kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.11.1 2.7.11.1] </span></td></tr> | ||
| <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4g3x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4g3x OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4g3x RCSB], [http://www.ebi.ac.uk/pdbsum/4g3x PDBsum]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4g3x FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4g3x OCA], [http://www.rcsb.org/pdb/explore.do?structureId=4g3x RCSB], [http://www.ebi.ac.uk/pdbsum/4g3x PDBsum]</span></td></tr> | ||
| Line 13: | Line 13: | ||
| == Function == | == Function == | ||
| [[http://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.<ref>PMID:14500341</ref> <ref>PMID:9020151</ref> <ref>PMID:12740440</ref>  [[http://www.uniprot.org/uniprot/RAF1_HUMAN RAF1_HUMAN]] Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation.<ref>PMID:9360956</ref> <ref>PMID:11427728</ref> <ref>PMID:11719507</ref> <ref>PMID:15385642</ref> <ref>PMID:15618521</ref> <ref>PMID:15849194</ref> <ref>PMID:16924233</ref>   | [[http://www.uniprot.org/uniprot/RASH_HUMAN RASH_HUMAN]] Ras proteins bind GDP/GTP and possess intrinsic GTPase activity.<ref>PMID:14500341</ref> <ref>PMID:9020151</ref> <ref>PMID:12740440</ref>  [[http://www.uniprot.org/uniprot/RAF1_HUMAN RAF1_HUMAN]] Serine/threonine-protein kinase that acts as a regulatory link between the membrane-associated Ras GTPases and the MAPK/ERK cascade, and this critical regulatory link functions as a switch determining cell fate decisions including proliferation, differentiation, apoptosis, survival and oncogenic transformation. RAF1 activation initiates a mitogen-activated protein kinase (MAPK) cascade that comprises a sequential phosphorylation of the dual-specific MAPK kinases (MAP2K1/MEK1 and MAP2K2/MEK2) and the extracellular signal-regulated kinases (MAPK3/ERK1 and MAPK1/ERK2). The phosphorylated form of RAF1 (on residues Ser-338 and Ser-339, by PAK1) phosphorylates BAD/Bcl2-antagonist of cell death at 'Ser-75'. Phosphorylates adenylyl cyclases: ADCY2, ADCY5 and ADCY6, resulting in their activation. Phosphorylates PPP1R12A resulting in inhibition of the phosphatase activity. Phosphorylates TNNT2/cardiac muscle troponin T. Can promote NF-kB activation and inhibit signal transducers involved in motility (ROCK2), apoptosis (MAP3K5/ASK1 and STK3/MST2), proliferation and angiogenesis (RB1). Can protect cells from apoptosis also by translocating to the mitochondria where it binds BCL2 and displaces BAD/Bcl2-antagonist of cell death. Regulates Rho signaling and migration, and is required for normal wound healing. Plays a role in the oncogenic transformation of epithelial cells via repression of the TJ protein, occludin (OCLN) by inducing the up-regulation of a transcriptional repressor SNAI2/SLUG, which induces down-regulation of OCLN. Restricts caspase activation in response to selected stimuli, notably Fas stimulation, pathogen-mediated macrophage apoptosis, and erythroid differentiation.<ref>PMID:9360956</ref> <ref>PMID:11427728</ref> <ref>PMID:11719507</ref> <ref>PMID:15385642</ref> <ref>PMID:15618521</ref> <ref>PMID:15849194</ref> <ref>PMID:16924233</ref>   | ||
| + | <div style="background-color:#fffaf0;"> | ||
| + | == Publication Abstract from PubMed == | ||
| + | The Ras/Raf/MEK/ERK signal transduction pathway is a major regulator of cell proliferation activated by Ras-guanosine triphosphate (GTP). The oncogenic mutant RasQ61L is not able to hydrolyze GTP in the presence of Raf and thus is a constitutive activator of this mitogenic pathway. The Ras/Raf interaction is essential for the activation of the Raf kinase domain through a currently unknown mechanism. We present the crystal structures of the Ras-GppNHp/Raf-RBD and RasQ61L-GppNHp/Raf-RBD complexes, which, in combination with MD simulations, reveal differences in allosteric interactions leading from the Ras/Raf interface to the Ras calcium-binding site and to the remote Raf-RBD loop L4. In the presence of Raf, the RasQ61L mutant has a rigid switch II relative to the wild-type and increased flexibility at the interface with switch I, which propagates across Raf-RBD. We show that in addition to local perturbations on Ras, RasQ61L has substantial long-range effects on the Ras allosteric lobe and on Raf-RBD. | ||
| + | |||
| + | Allosteric Effects of the Oncogenic RasQ61L Mutant on Raf-RBD.,Fetics SK, Guterres H, Kearney BM, Buhrman G, Ma B, Nussinov R, Mattos C Structure. 2015 Mar 3;23(3):505-16. doi: 10.1016/j.str.2014.12.017. Epub 2015 Feb, 12. PMID:25684575<ref>PMID:25684575</ref> | ||
| + | |||
| + | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
| + | </div> | ||
| ==See Also== | ==See Also== | ||
| Line 21: | Line 29: | ||
| __TOC__ | __TOC__ | ||
| </StructureSection> | </StructureSection> | ||
| - | [[Category:  | + | [[Category: Human]] | 
| [[Category: Non-specific serine/threonine protein kinase]] | [[Category: Non-specific serine/threonine protein kinase]] | ||
| [[Category: Buhrman, G]] | [[Category: Buhrman, G]] | ||
Revision as of 05:39, 11 March 2015
Crystal Structure of Q61L H-Ras-GppNHp bound to the RBD of Raf Kinase
| 
 | |||||||||||
